
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1984

Heat transfer enhancement downstream of vortex
generators on a flat plate
Aly Youssef Turk
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Turk, Aly Youssef, "Heat transfer enhancement downstream of vortex generators on a flat plate " (1984). Retrospective Theses and
Dissertations. 8223.
https://lib.dr.iastate.edu/rtd/8223

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F8223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/8223?utm_source=lib.dr.iastate.edu%2Frtd%2F8223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This reproduction was made from a copy of a document sent to us for microfilming. 
While the most advanced technology has been used to photograph and reproduce 
this document, the quality of the reproduction is heavily dependent upon the 
quality of the material submitted. 

The following explanation of techniques is provided to help clarify markings or 
notations which may appear on this reproduction. 

1. The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. This 
may have necessitated cutting through an image and duplicating adjacent pages 
to assure complete continuity. 

2. When an image on the film is obliterated with a round black mark, it is an 
indication of either blurred copy because of movement during exposure, 
duplicate copy, or copyrighted materials that should not have been filmed. For 
blurred pages, a good Ima^ of the page can be found in the adjacent frame. If 
copyrighted materials were deleted, a target note will appear listing the pages in 
the adjacent frame. 

3. When a map. drawing or chart, etc.. is part of the material being photographed, 
a definite method of "sectioning" the material has been followed. It is 
customary to begin filming at the upper left hand comer of a large sheet and to 
continue from left to right in equal sections with small overlaps. If necessary, 
sectioning is continued again-beginning below the first row and continuing on 
until complete. 

4. For illustrations that cannot be satisfactorily reproduced by xerographic 
means, photographic prints can be purchased at additional cost and inserted 
into your xerographic copy. These prints are available upon request from the 
Dissertations Customer Services Department. 

5. Some pages in any document may have indistinct print. In all cases the best 
available copy has been filmed. 

Micidilrns 
Intemational 
300 N.ZMb Road 
Am Artwr.MI 48106 



www.manaraa.com



www.manaraa.com

6605877 

Turk, Aly Youss«t 

HEAT TRANSFER ENHANCEMENT DOWNSTREAM OF VORTEX 
GENERATORS ON A FLAT PLATE 

/owf Statê UnlvtfsltY PH.D. 

University 
Microfilms 

Intdrnstioroi 300N.ZMBIIcM.Ani«lb«.MI4tlW 



www.manaraa.com



www.manaraa.com

PLEASE NOTE: 

In all caaea this material has been filmed in the best possible way from the available copy. 
Problems encountered with this document have been identified here with a check mark / . 

1. Glossy photographs or pages 

2. Colored illustrations, psper or print 

3. Photographs with dark background 

4. Illustrstlons are poor copy 

5. Pages with black marks, not origins! copy 

6. Print shows through as there is text on both sides of page 

7. indistinct, twoken or small print on several owes \% 

8. Print exceeds margin requirements 

9. Tkihttv bound copy with print tort In amine 

10. Computer printout pages with Indistinct print 

11. Pagers) lacking when material received, and not available from school or 
author. 

12. Pageis) i 

13. Two pages numbered 

seem to be mWng In numberiiH) only as text follows. 

I . Te%* follows. 

14. Curing and wrinkled pages 

15. Other 

University 
Microfilms 

International 



www.manaraa.com



www.manaraa.com

Heat transfer enhancement downstream 

of vortex generators on a flat plate 

by 

Aly Youssef Turk 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major; Mechanical Engineering 

Approved: 

the Major For'the Major Department

Iowa State University 
Anes, Iowa 

1984 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

li 

TABLE OF CONTENTS 
PACK 

NOMENCLATURE tv 

I. INTRODUCTION \ 

A. Rationale for Investigation 1 

B. Literature Survey ......... . 3 

C. Scope of Investigation 18 

II. EXPERIMENTAL APPARATUS 20 

A. General 20 

B. Air Flow Facility 20 

C. Flat Plato 23 
1. Plate parts 23 
2. Pressure taps 26 
3. Tliermocouples 26 
4. Vortex generators • • 29 

0. Instrumentation 33 
1. Temperature sensing 33 
2. Pressure sensing .......... 34 

a. Pressure instruments ........ 34 
b. Velocity-profile instruments . 3i> 

3. Electrical instruments 36 
a. Power input 36 
b. Hot-film turbulence measurements 3@" 

4. Data aquisition system 3B^ 

III. EXPERIMENTAL PROCEDURE 40 

A. Calibration 40 

B. General Operating Procedure 46 

C. Data Reduction ... 51 
1. Plate energy equation 5Î 
2. Flow velocity and pressure 54 

IV. PRELIMINARY EVALUATION TESTS 56 

A. Evaluation Tests of the Equipment and Measurement 
Instrumentation 56 

1. Pressure-gradient measurement 56 
2. Heat transfer distribution 56 
3. Laminar boundary layer profiles 6Z 



www.manaraa.com

i l l  

V. RESULTS AND DISCUSSION 68 

A. Heat Transfer Performance at (dp/dx) = 0 69 
1. Local span-averaged heat transfer results . ... 69 

à. Effect of e.* 0.0625 In 69 
b. Effect of e> 0.125 In 73 
c. Effect of e^ 0.25 in. 76 

2. Overall heat transfer results ...... 79 

B. Heat Transfer Performance at (dp/dx)" '0.02 Ib./ft^ 82 
1. Local span-averaged heat transfer results ... 82 

a. Effect of e^ 0.0625 in 82 
b. Effect of e.» 0.125 in 85 
c. Effect of e> 0.25 in. . 88 

2. Overall heat transfer results .88 

3 
C. Heat Transfer Performance at (dp/dx)" -0.04 Ib^/ft ..... .93 

1. Local span-averaged heat transfer results ........ .93 
a. Effect of Og^ 0.0625 in. 93 
b. Effect of e." 0.125 in . 95 
c. Effect of Og" 0.25 in • 

2. Overall heat tAnsfer results 102 

D. Summary of the Effects of Vortex Generators on Overall Heat 
Transfer Coefficient ... ...... 104 

E. Boundary Layer and Turbulence Development 108 

r. Concluding Remarks ......... 130 

VJ. CONCLUSIONS 132 

VIJ. BIBLIOCRAPKY 134 

Vni. ACKNOWLEDGEMENTS 136 

IX. APPENDIX A 137 

A. Computer Program For Reducing The Hot-Film Data 137 

X. APPENDIX B 147 

A. Computer Program For Reducing Heat Transfer Data 147 

XI. APPENDIX C 162 

A. Error Analysis 162 

XII. APPENDIX D 171 a 

A. Tabular Data 171a 



www.manaraa.com

iv 

NOMENCLATURE 

Area of strip surface, ft* 

s Specific heat of air, Btu/lbm'F. 

'0. =1 Constants, equation (22). 

®u(x,*) Moan velocity decay factor, equation (24). 

The dc voltage output from hot-film anemometer, volts. 

•s Height of a vortex generator blade, in. 

»c Dimensional constant, 32.2 Ibm-ft/lbf-sec*. 

Overall convective heat transfer coefficient with vortex 
generators present, Btu/hr-*F-ft'. 

Overall convective heat transfer coefficient with no 
vortex generators present, Btu/hr-*F-ft*. 

Local span-averaged heat transfer coefficient with vortex 
generators present. 

(̂*)o Local heat transfer coefficient with no vortex generators 
present. 

(̂x,z)8 Local heat transfer coefficient with vortex generators 
present. 

1 Current, amp. 

Thermal conductivity of air evaluated at the «man boundary 
layer temperature, Btu/hr-'F-ft. 

S Thermal conductivity of the plate material. Btu/hr-*F-ft. 

L The tested plate length, in. 

Length of a vortex generator blade, in. 

Constants, equation (23). 

^at» Atmospheric pressure, in. Hg. 

Po Total pressure of air inside the wind tunnel, in. water. 
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^s(%) Static pressure of air at X'distance from the plate 
leading edge, in. water. 

Q Heat rate input to a strip, Btu/hr. 

Qg Energy loss by conduction. 

Net energy loss by convection. 

Qy Energy loss by radiation. 

^air The gas constant for air. 

. Reynold» number based on a X'distance from the leading 
edge. 

Rg Resistance of the strip at temperature t^, ohm. 

Rg Resistance of the strip at reference temperature t^, ohm. 

S The hot-film sensitivity factor, volt/(ft/sec). 

Pitch between pairs of the blades forming a pair of 
counter-rotating vortex generator blades, in. 

«g Space between vortex generator blades, in. 

St. . Local span-averaged Stanton number with vortex generators 
present. 

^t(x)o Local Stanton number with no vortex generators present. 

T Absolute temperature, *R. 

Tu % Turbulence intensity, X, 

tjj Temperature of the back side of the working surface, 'F. 

tjj Temperature of the heated strip surface, "F. 

The effective mean velocity, ft/sec. 

Up Free-stream velocity at the leading edge, ft/sec. 

U , . Free-stream velocity at a distance x from the the leading 
edge, ft/sec. 

u Velocity in x-direction in boundary layer. 
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Root mean square of fluctuating velocity in x-diroction in 
boundary layer, ft/sec. 

Uncertainty in any quantity equation (25). 

Distance measured parallel to the surface of plate, 
distance from leading edge, coordinate direction. 

Location of vortex generator blades. 

Distance measured perpendicular to surface of plate, 
coordinate direction. 

Thickness of the plate working surface, in. 

Distance measured spanwise to the surface of plate, 
coordinate direction. 

Angle between a vortex generator blade and the on coming 
flow, degree. 

Temperature coefficient of resistivity for the strip, 
l/*F. 

Boundary layer thickness. 

Laminar boundary layer thickness edtimated at the location 
of vortex blades. 

Emissivity of the strip material. 

Thickness of a vortex generator blade. 

Fohlhausen's parameter defined in equation (21). 

Kinematic viscosity of air evaluated at the mean boundary 
layer temperature. 

Unheated length of the plate. 

Density of air. 

Stefan-Boltzmann constant. 

Nonedimensional pressure gradient parameter. 
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K INTRODUCTION 

A. Rationale for Investigation 

The main object of heat transfer analysis is to find ways of 

predicting heat transfer rates. Prediction of convective heat transfer 

rates requires calculation of heat transfer coefficients, values of 

which are governed by the type and the flow conditions of fluid involved 

in the heat transfer process and by the geometrical aspects of the 

containing walls. For convective processes involving heat transfer to 

or from a surface exposed to a fluid stream, the coefficient of heat 

transfer h is defined by the equation 

where Q is the heat transfer rate to or from the surface, is the area 

of the surface, t^ is the surface temperature and t^ is the fluid 

temperature. For a given temperature difference, high heat transfer 

coefficients require less surface area and reduce the size, weight and 

cost of an exchanger. Improving convection heat transfer coefficients 

by various means is usually called augmentation or enhancement of 

convective beat transfer. 

There are many techniques for augmenting convective heat 

transfer (1}. The work described in this thesis is directed at single-

phase flows over flat surfaces with constant-beat'flux on which boundary 

layers exist, similar to the flows in many types of heat exchange 

equipment. Technically, constant-heat-flux problems arise in a number 
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of situations: electric resistance heating, radiant heating and in 

counter flow heat exchangers when the heat capacity rates are the same. 

Recent work on plates and plate arrays suggests improvements in 

convection heat transfer are possible by creating unsteady or turbulent 

flows to alter the boundary layer. 

Surface geometry modification such as surface protrusions or vortex 

generators alters the ordinary flow pattern and fluid distribution along 

the wall surface and enables mixing of slower fluid near the wall 

surface with the faster fluid from the outer region of the boundary 

layer. The >akes downstream of the geometry modifications introduce 

longitudinal trailing vortices into the boundary layer which sweep the 

surface, and break up the laminar sublayer and increase the turbulence 

near the plate surface. In other words, if the level of mixing within 

the boundary layer is raised artificially by a vortex generator it leads 

to a thinner or more turbulent boundary layer {2). Heat transfer 

coefficient for the surface is also increased because the motion of the 

external stream fluid toward the wall, reducing the temperature 

difference for a constant heat flux surface. 

The work presented in this study is directed toward use of vortex 

generators attached to a plate surface as a means to improve beat 

transfer coefficients by introducing boundary layer fluid mixing in 

laminar flows. 

Vortex generators may be characterized by whether the vortices 

produced rotate in the same or opposite directions. A vortex generator 
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which produces vortlcos that turn in the same direction is known as a 

co-rotating generator. If the vortices are in the opposite sense, they 

are called counter-rotating vortices. Both types are schematically 

shown in Figure 1 together with the geometric nomenclature (or typical 

configurations. The nomenclature for the co-rotating generator include» 

the spacing of the blades s^, the blade height the blade length 1^, 

the blade thickness and the angle to the oncoming flow For the 

counter-rotating generator, the pitch between pairs of the blades is 

an additional parameter. Tlte blades shown are rectangularly shaped, but 

other shapes such as triangles or fapezoids could be used. Moreover, 

the plane of the blades of either type may be tilted from the vertical 

at an angle 6^. 

B. Literature Survey 

The work of Chang {2) notes that the principle of boundary layer 

control by vortex generators relies on the increased mixing between the 

external stream and the boundary layer that is prcmoted by streamwise 

vortices trailing over the surface. Fluid particles with high momentum: 

in the stream direction are swept in along helical paths towards the 

surface to mix with and to replace the slower fluid at the surface, 

which in turn is swept out away from the surface. The main streamwise 

momentum of the fluid particles in the boundary layer is increased and 

the skin-friction coefficient will increase where high velocities occur 

near the surface. Reynolds' analogy then suggests that the heat 
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(a) CO-rotating vortex generator 

M o 

(b) counter-rotating 

vortex generator 

Figure I. Schematic of vortex generators 
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transfer rate over the plate surface will increase due to increased 

skin-friction coefficient. 

Pearcey (3), in studies of boundary layer control by vortex 

generators, found that the most important single factor in establishing 

an effective vortex pattern was the need to have optimum spacing.of 

vortices. He indicated that a useful pattern could be achieved for co-

rotating vortex generators if the spacing of the vortices was greater 

than about three times their height. For a smaller spacing, the 

vortices tended to damp one another and failed to maintain high 

velocities at any point in the cross-section of the boundary layer and 

vortex flow. 

Pearcey indicated that the induced velocities for counter-rotating 

systems caused the array of vortices to change substantially as they 

moved downstream. In a system in which all vortices were equally 

spaced, it was shown that the vortices were effective in delaying 

boundary layer separation with extensive high energy regions occurring 

in which the boundary layer was kept thin between alternate pairs of 

vortices, and the low energy fluid was swept out between the 

intermediate pairs of vortices. Further downstream, the centers of 

vortices moved closer together in pairs and further away from the 

surface, and the vortices eventually damped out. Pearcey suggested a 

"Bi-plane" system that was essentially a combination of two or more rows 

of counter-rotating generators, which could be used to accelerate and 

improve the mixing within the boundary layer and keep the vortices 

adjacent to the surface further downstream. 
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Poarcey (3) discussod contributions to the drag due to the vortex 

blades, including the drag on the blades themselves and the increased 

skin friction on the surface due to the vortex action. These 

contributions were, to a greater or smaller extent, offset by the 

reduction in form drag of the surface because of the reduction in the 

boundary layer displacement effect. The not drag penalty was a balance 

between the opposing contributions and this was probably why it was 

usually reasonably small, and also why observations of its magnitude 

vary widely from one application to another. 

Schubauer arI Spangenberg (4) investigated the importance of mixing 

in boundary layers and in particular of forced mixing produced by vortex 

generators and other mixing devices. This investigation was conducted 

on a two-dimensional turbulent boundary layer formed on the wind tunnel 

floor in a special wind tunne^l able to produce a variety of free-stream 

adverse pressure gradients. Each type of mixing device was arranged in 

a row perpendicular to the main flow direction on the bottom of the wind 

tunnel with a mixing device height of the order of the boundary layer 

thickness at the installation postion. The main objective was to 

compare the effect of increasing the mixing within the boundary layer 

with the effect of reducing the pressure gradient on boundary layer 

development and separation. 

The conclusions reached from this investigation were that the 

mixing devices could be used to assist flow against an opposing pressure 

gradient by delaying the separation and giving the same effect on the 
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boundary layer as a general reduction in pressure gradient. A spanwise 

variation in boundary layer longitudinal velocities was observed in the 

region downstream of the mixing devices. The amount of spanwise 

variation decreased with increasing distance downstream. The boundary 

layer displacement thickness with the mixing devices is generally loss 

than that without mixing devices obtained at the same location. A small 

increase in momentum thickness over that obtained at the same location 

in the absence of the mixing devices was observed. 

A conclusion of Schubauer and Spangenberg |4) is that use of vortex 

generators will lead to a thinner boundary layer and increased skin-

friction coefficient where high velocities occur near the wall. As 

noted previously, according to Reynolds' analogy, the rate of heat 

transfer is also expected to increase. 

Recently, vortex generators have been a parameter in investigation» 

concerning enhancement of beat transfer coefficients. After an 

extensive literature search, only a few studies on heat transfer 

enhancement downstream of vortex generators were found. 

It is common practice to treat heat transfer over a cylinder with 

very large diameter as being a close approximation to beat transfer over 

a flat surface. An early beat transfer investigation by Johnson and 

Joubert [5] was a starting point for use of vortex generators as an aid 

to enhancement heat transfer rate over a flat plate surface. 

Johnson and Joubert (5| presented data for an experimental 

investigation of the effect of vortex generators on drag and beat 
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transfer for a 6-inch diameter circular cylinder in crossflow in a wind 

tunnel. Two cylinders wore used, one for measurement of drag and the 

other for measurement of heat transfer. The cylinder used for drag 

tpsts was supported on a strain gauge drag balance for measuring total 

drAg, and had 36 pressure taps for measuring form drag. The outer 

surface of the cylinder used for heat transfer tests was electrically 

heated by a strip of Nichrome ribbon, and the inner surface was 

maintained at a constant temperature by using condensing steam at 

atmospheric pressure inside the cylinder. The heat input to the strip 

t 4s controlled to adjust the strip temperature to correspond with that 

of the inner surface of the cylinder so that the total heat generated in 

the strip was convected to the air. Local coefficients were obtained 

from the circumferential temperature distributions and the electrical 

power input to the strip. 

One configuration of a row of triangular co-rotating vortex 

generator blades was used. The blades were cut and bent from a 

continuous strip of 0.020 in. tinplated steel to form equally spaced 

right triangular blades with an angle of incidence 10 degrees to the 

flow direction. The blade geometry based on the nomenclature in 

Figure 1 had a blade height e^= 0.20 in., and a transverse space between 

the vortex generator blades s^= 0,80 in. The cylinder was fitted with 

two similar rows of vortex generators which were symmetrically placed 

parallel to the front stagnation line. The angular postion of the rows 

from the front stagnation line was varied. 
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Meaurem«nts were made both with and without vortex generator blados 

on the outer surface of the cylinder. The results showed that the drag 

coefficient decreased when the vortex generator blades were used, and 

that the location of the vortices had a large effect on the drag 

coefficient by changing the critical Reynolds number. The further the 

vortex generators were from the front stagnation line of the cylinder, 

the lower was the critical Reynolds number, and the higher the 

supercritical drag coefficient. 

Johnson and Joubert (5) qualitatively determined the effect the 

vortex generators had o» the surface shear stress by using a modified 

oil-filmi technique to obtain photographs of the flow pattern over the 

outer surface of the cylinder. The photographs showed that immediately 

behind the vortex generator strip there were regions where the film was 

completely removed by the generated turbulence. Moreover, the presence 

of trailing vortices caused the separation line to become wavy with a 

period equal to the space between the vortex generator blades. 

The heat transfer results showed that the vortex generators had a 

large effect on the local rates of heat transfer causing increases of 

200 percent in some positions over the surface of the cylinder. The 

magnitude of the local heat transfer coefficient downstream of the 

vortex generators was found to reach a maximum in two regions, the first 

imnediately behind the generator station, and the second in the region 

around the separation point. In the first region, improvement of the 

heat transfer coefficient was caused by the vortices transferring 
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momentum into the boundary layer and, to some extent, by the effect of 

the diflturbances generated in the flow as it crosses the vortex 

generators. Johnson and Joubert indicated that the improvement of the 

heat transfer coefficient which occurred at the separation was quite 

unusual, and they believed that the process of the separation was 

affected in some way by the presence of the vortices and high 

turbulence. However, the increase in overall heat transfer rates was 

limited by reduced local heat transfer at the rear of the cylinder. The 

net overall increase in Nusselt number varied from 7 to 17.5 percent 

over a range of Reynolds numbers based on cylinder diameter ranging from 

4x10^ to 3x10^. 

From the drag and heat transfer results, Johnson and Joubert 

suggested that the choices of the position of the vortex generators 

referenced to the front stagnation line had to comply with conflicting 

requirements. For example, the generators placed at a larger angle from 

the front stagnation line showed a greater improvement of heat transfer 

rates, while those placed close to the front of the cylinder had a 

larger area of surface over which Che vortices swept. 

Edwards and Alker carried out an investigation on the 

improvement of forced convection beat transfer on a flat plate by using 

surface protrusions in the form of cubes and vortex generators. The 

protrusions were attached to the lower wall of a wind tunnel with a 

working section heated electrically with a uniform heat flux. Local 

beat transfer coefficients were determined by measuring the local 
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surface temperature and the local free-stream air temperature. Spot 

temperature readings were made using a luminescent phosphor technique. 

All cubes and vortex generator blades were one inch high, and each type 

was arranged in a single row normal to the flow direction. The local 

transverse distribution of heat transfer coefficient was measured at 

five locations downstream of the surface protrusions. 

The single row of cubes was tested at transverse spaces s^ of 3, 4 

and 6 in. between cubes. A row of co-rotating vortex generator blades 

was formed of vertical right triangular blades with vertical rear edges 

ind a length 1^» 2 in. on the heated surface which similar to those 

tested by Johnson and Joubort |5). This configuration of co-rotating 

vortex generators was tested at equal transverse spaces s^ between the 

blades of 2, 3 and 4 in. and for two angles a > 12.5 and 25 degrees 

between the vortex blades and the oncoming flow. 

Two configurations of rectangular counter-rotating vortex generator 

blades were also tested with a length 1^» 1.25 in. on the heated 

surface. The transverse space between two blades forming a vortex pair 

was 1.25 in., and the transverse pitches of pairs of counter-rotating 

vortex generators were 3 and 4 in. All configurations were placed at 

an angle equal of ±15 degrees between the vortex blades and the duct 

axis. 

Edwards and Alker indicated that an improvement in the local beat 

transfer coefficient was obtained for all types of systems. For the row 

of cubes, it was found that the highest local improvement was 
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immediately downstream of the cubes, but their effect reduced rapidly 

further downstream. For the vortex generators, it was observed that 

their effect on the improvement of the local heat transfer coefficient 

extended further downstream. The co-rotating vortex generator with the 

smaller transverse spaces between the blades improved local heat 

transfer coefficients more than that obtained with larger spaces. îh» 

mo»t persistent Improvement was obtained with the counter-rotating 

vortex flow structure, especially with the the smaller pitch 

arrangement. 

Lee (7.8.9,10) carried out investigations to study the effect of a I 

system of vortices in the space between the plate fins of a finned 

cooling tube. Tests were done in a special wind tunnel in which it wm 

possible to mount various forms of vortex generators on the plate fins 

and to observe and measure the vorticity field generated in the space 

between the fin plates and the cooling tubes to which they were 

attached. 

As the first step in his investigations. Lee (7) performed 

experiments to find out whether or not vortices could be established 

between the cooling fins at low Reynolds nuuWbers. He made a 6-times 

scale model of the fin tube pair and ran it at about 3 fps air speed. 

Five types of vortex generators were tested with angles of 

incidence IS, 20. 25 and 30 degrees between the vortex generator and 

the main flow direction. The first and second types were triangular and 

rectangular blades respectively with e = 0.5 in. and I = 2.0 in.. and 
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nnch typo was mounted normal to a solid aluminum fin plate. The third 

type was as a ramp running from one plate to the plate above it. The 

fourth type was two parallel rectagular blades, each with e^» 0.625 in. 

and 1^» 2.0 in., punched up out of a plane which was inclined to the 

moin flow direction. The last type was a bulge embossed on the fin 

plate with e » 0.625 in., 1 " 3.0 in. and C " 0.625 in. The embossed 
8 S S 

vortex generator was tested with two equal transverse spaces between thn 

blades s " 2.5 and 4.0 in. 
8 

Each type of vortex generator was mounted in two row», one just 

behind the leading edge of the fin, the second about half way back along 

the fin with an opposite angle of incidence to that of the first row. 

The second produced co-rotating vortices with a sense opposite to tho@e 

produced by the first row. 

A yaw vane was used to measure the average flow direction. The 

vane was placed a distance downstream of the vortex generator being 

studied, and moved cross-stream to get the angular deflection of the 

flow. The maximum angular deflection of the yaw vane was considered 

proportional to the maximum strength of the vortex. However, due to 

friction and imperfections of balance, the results from the vane were 

unreliable. 

Flow observations with a smoke generator were used to see whether 

or not it was possible to establish a system of vortices and to study 

the flow pattern to confirm if the yaw vane measurements were valid. 

The results showed that for a range of incidence angle from 15 to 20 
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degroos the punchod-up rectangular blade and the embossed vortex 

generator seemed to be the most effective types of vortex generators. 

Lee's second experiments (6) wore carried out to measure the amount 

by which heat transfer was increased due to the vortices and to mewsupA 

the increase in air flow resistance. The investigation was done on two 

sets of aluminum fins 0.016 in. thick spaced eight to the inch, with 

each sot soldered to a steam tube. The vortex generators tested wore 

embossed, and the fin plate was 6 in. wide by I in. deep. Each embo&*%U 

vortex generator had Ç • 0.03 in., I • 0.36 In., with » • 0.33 In. 
6 8 & 

between adjacent blades. The height of the vortex generator was 

approximately half the distance between the adjacent fin plates forming 

a channel. 

Steam was provided by an electrically heated boiler, and air wa& 

drawn through the cooling fins by means of a small adjustable speed fan. 

The overall rate of heat transfer for various flow rates was obtained by 

measuring the rise in air temperature and the air mass flow rate. The 

Reynolds number was based on flow velocity between the fins and on the 

clear distance between them. Measurements were made both with and 

without the embossed vortex generators. 

2 
The results indicated that at a mass velocity of 1.2 lb /ft .sec 

fli 

the increase in beat transfer rate was approximately 50 percent over 

that for the plain fin. The improvement in beat transfer rate was 

reduced with decreasing air flow rate and reached about 30 percent at an 

2 
air flow rate of 0.4 lb /ft .sec. It was also found that the pressure 
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drop across tho fin cubes was increased by 28 percent at an air flow 

2 
rate of 1.2 lb /ft .sec. 

m 

Lee noted that tho relationship between the flow pattern observed 

in (7) and heat transfer rate data obtained in (8) was not precise duo 

to the effect of roughness and small irregularities produced in tho 

manufacture of the ftns. Measurements of the electrical power to the 

boiler were made so that it could be compared with the power representurt 

by the heating of the cooling air, and it was found that the electrical 

power was approximately 30 percent greater than the energy absorbed by 

the air. No indications of loss calculations were given. 

Lee |8| indicated that the vortices became weaker as they flowed 

downstream of the vortex generators and suggested the addition of two 

more rows of vortex generators at the middle of the fin plate similar to 

those at the front edge to improve the vortex pattern over the entire 

fin plate surface. 

Lee |9) performed experiments on an array of fintubes with 

rectangular fin# with vortex generators, to measure the improvement of 

heat transfer rate and the increase of the pressure loss. The array wa& 

IS in. square in frontal area with fins 6 in. long by 1 in. wide, spaced 

10 to the inch. An embossed vortex generator configuration was adopted 

similar to those suggested in Reference |8]. with a height of 0.05 in. 

Steam was generated in a boiler to maintain the heat exchanger tubes at 

a uniform temperature. Air was drawn through the test array from a 

suction chamber and the heat transfer rate was calculated from the air 
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temperature rise and the air flow rate. Pressure differentials were 

measured across the test array. 

Heat transfer and pressure drop were measured at varying air flow 

rates, and the Reynolds number was calculated using the hydraulic 

diameter of the fin passage and the net air mass flow. The results 

obtained for the array over a range of Reynolds numbers from 300 to 

2.500 showed that there was a 50 percent average increase in heat 

transfer rate and about 17 percent increase in pressure loss. 

Further tests were done to assess the effects on heat transfer and 

pressure loss of adding vortex generators to rectangular plate fin» such 

as might be used in an automotive radiator |10|. Low-conductivity 

models of the plate fins were made at about five times full scale, each 

with a set of vortex generators. The vortex generator blades were 

rectangular blades and their arrangement was based on the earlier 

investigations (7,8) for the embossed vortex generators. Each 

rectangular vortex blade had e^» 0.25 in. and 1.0 in., and the space 

between each adjacent blade s^ was 1,4 in. 

Heat transfer rates were measured using a technique of observing 

the melt-line of a temperature-sensitive paint applied to the plate 

surface. The method used was to immerse a cool, painted plate fin 

quickly into a hot airstream generated by a beater in the wind tunnel. 

The time and the progression of the melt-line across the fin plate was 

observed through a television camera and recorded on a video-tape 

recorder. By using the time-temperature data together with the solution 
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of the unsteady conduction temperature field equation for the fin, the 

rnte of rise of the temperature of the fin material was related to the 

heat transfer rate and the instantaneous local heat transfer 

coefficients were obtained as a function of time. Mean values of local 

heat transfer coefficient were estimated for different regions 

downstream of the vortex generators, and a value of the overall heat 

transfer coefficient over the fin plate surface was obtained. It was 

found that adding the vortex generators increased the heat transfer 

coefficient over the plate surface by about 40 percent, and the increas# 

in the pressure drop was about IS percent. 

A recent investigation was carried out by Russell et al.|ll| to 

study the effects of vortex generators on heat transfer from a 

rectangular plate-fin surface at a uniform temperature. The 

investigation was based on the results obtained by Lee (7,8.9,10). 

Russell et @1.(11) investigated the spanwise variation of heat transfer 

coefficient downstream of the vortex generators at a Reynolds number of 

3 
about 2x10 for the model used by Lee (10). The spanwise distribution 

of the local heat transfer coefficient showed that a higher improvement 

of heat transfer rate was always associated with the region of lower 

velocity ., 

The purpose of the vortex generators is to provide enhancement of 

beat transfer on the surface to which they are attached. The previous 

investigators indicated agreement about the improvement in performance 

of vortex generators in heat transfer augmentation. However, data 
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available in the open literature give the effects of unrelated 

configurations of vortex generators on heat transfer enhancement. As nn 

example, Edwards and Alker |6} investigated enhancement of local heat 

transfer coefficients for only one height of vortex generator blades. 

Lue (7,8,9,10) and Russell et al.|ll) investigated the overall heat 

transfer coefficient over a fin plate and arrays of rectangular fins. 

No complete parametric data have been found for both the local and 

overall heat transfer coefficients downstream of a configuration vortox 

generators. Moreover, In all the above investigations, the vortex 

generator blades were attached to the heated surface, and the heat 

transfer enhancement was due not only to the influence of the vortex 

generator, but also to the vortex generator blades acting as extended 

surface». In addition, only qualitative fluid dynamic aspects were 

investigated to determine how and why enhancement is obtained. 

C. Scope of Investigation 

The present investigation was conducted in order to better 

understand the augmentation of forced convective heat transfer when a 

single row of counter«rotating vortex generator blades is attached to a 

flat surface. The major emphasis of this investigation is to study the 

way in which vortex generators augment the heat transfer coefficient of 

an initially laminar boundary layer over a flat, constant'heat'flux 

surface exposed to favorable free-stream pressure gradients. Particular 

emphasis is placed on the relationship between the geometry of vortex 
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generators and the augmentation of local and overall heat transfer 

coefficients and on the behavior of the boundary layer downstream of the 

vortex generators. 

A general expression for the parameters investigated at a local 

point of measurement can bo written as 

St(x 2)" f ( R®(x)' (dP/dx), (s/e)^, (e/6)^ ) (2) 

where St^^ is the local Stanton number, Re^^) the local Reynolds 

number, (dp/dx) is the free-stream pressure gradient, e^ is the height 

of the vortex generator blade measured from the plate surface, is the 

boundary layer thickness at the distance x^ from the plate leading edge, 

and s is the transverse space between the vortex generator blades. Hi» 

system parameters outlined above in equation (2) are described in detail 

in Chapters 11 and III. 

This dissertation includes results of an experimental investigation 

of the heat transfer augmentation achieved by twelve configurations of 

rectangular blade vortex generators with three favorable pressure 

gradients impressed on the plate surface. 

The flow pattern within the boundary layer is investigated for 

certain conditions in order to understand the interaction between the 

flow structure and the expected improvement of the heat transfer rate 

and a set of guidelines for the design of more efficient surface is 

proposed. 
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II. EXPERIMENTAL APPARATUS 

A. Gsiioral 

The investigation was carried out in the Subsonic Fluid Flow 

Facility of the Mechanical Engineering Department, Iowa State 

University. 

B. Air Flow Facility 

The air flow facility used was an open circuit suction type wind 

tunnel utilizing a centrifugal fan with a nominal flow capacity of 

13.400 cfn at a head of 20.8 inches of water, and driven by a 60 

horsepower motor. Figure 2 shows the general configuration of the 

tunnel. The air flow rate is controlled by a combination of dampers and 

fan inlet guide vanes. Details of the test section are shown in Figure 

3. The test section of the tunnel is 14 in. square in cross-section and 

66 in. long, and is constructed of Plexiglas plastic and aluminum. The 

test plate was mounted in the test section with its leading edge 23 in. 

downstream from the test section entrance. The coordinate system shown 

was adopted to describe locations in the flow. The test section wall 

facing the test plate surface had four slots located at different 

postions in the x-direction to permit insertion of instrument probes to 

survey the flow downstream of the vortex generators. 

Velocity profiles at the upstream end of the test section without a 

model present were uniform within one percent over the range of 
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velocities involved In this investigation. The free tunnel had a 

minimum streamwise turbulence intensity of 0.35 percent at a velocity of 

too fps, and maximum streamwise turbulence intensity of 0.50 percent at 

a velocity of 10 fps. 

C. Flat Plate 

The flat plate used was similar to those used by Teller and Yesger 

112), Junkhan and Serovy |13), and Blair and Verle (14) among others. 

The plates in Reference (12) and (14) were approximations to constant 

heat flux surfaces similar to the plate described below. The assembled 

plate was 14 in. wide, 41 in. long and 1 in. thick. It was composed of 

five major parts - a nosepiece, heat transfer working surface, a plate 

back with supporters and ribs, and two side rails. The arrangement of 

these parts is shown in Figure 4. 

i' Plate parts 

The nosepiece was constructed of aluminum 2.25 in. long and 1 in. 

thick. The leading edge of the nosepiece was formed as a half ellipse 

section to aid in maintaining a stable stagnation point. A spanwise 

removable strip 1 in. wide and 0.25 in. thick was inserted in the top of 

the nosepiece flush with the plate surface. The spanwise strip could be 

replaced by a similar one with vortex generator blades mounted on it. 

Electric resistance heaters were used to approximate a uniform heat 

flux on the surface. The metal foil heaters employed were cooiposed of 

34 transverse strips of nickel-chromium resistance alloy commercially 
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known as Nichrome V, each 1 in. long, 0.002 in. thick and 12 in. wide on 

the working surface. The strips were mounted on the working surface, 

which was made from a paper-laminated phenolic commercially known as 

Oarolite NEMA grade "C", by use of a nooprene adhesive type F-1 

commercially known as Carboline. The strips were spaced 0.0625 in. 

apart on the working surface to allow static pressure taps of stainless 

steel tubing to be installed between strips. The resulting 0.0625 in. 

by 0.002 in. spanwise grooves were filled with a high-temperature 

Dekhotinsky cement and each space was carefully checked to assure a 

smooth working surface. These spaces are very small and occupied orly a 

small fraction of the surface area. 

The plate back, cover strips and internal spanwise ribs were made 

from material identical to that used for the working surface. The 

internal spanwise ribs and two lengthwise aluminum side rails were 

primarily to add structural strength to the plate assembly. The 

internal spanwise rib* bad slots cut in them to carry the electrical 

wires, pressure tubing, and the thermocouple wires. The 0.50 in. thick 

space between the plate back and the working surface was filled with 

expanded polystyrene insulation balls to reduce the heat loss by 

conduction from the heated surface. 

Two boles were drilled through each resistance strip into the edge 

of the working surface base, and copper bus bars, each about 2 in. long 

were held in position over the bent edge of the resistance strips with 

small copper screws to provide electrical connections. The strips were 
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wired in series to assure that the same current passed through each of 

the resistance strips and were powered by a single low ripple regulated 

dc power supply. 

The two cover strips were made from Carolite, and were dasignod to 

cover the copper bus bars and the dc power supply wires to the strips. 

|. Pressure taps 

Static pressure taps on the plate surface were made of 0.02 in. 

inside diameter stainless tubing inserted between adjacent resistance 

strip» as shown in Figure 5. The tubing was inserted through a hole 

drilled in tho working surface base and held in place with a spot of 

epoxy adhesive. Each tube was about 1 in. long and bent about 90 

degree* at the middle. The tube end was connected with a plastic tube 

leading to the pressure measurement system. Care was taken to make sure 

the tubing did not cause an electrical short circuit between strips. A 

pressure cap was placed at the center of the stagnation line of the 

nosepiece. 

3. Thermocouples 

Local temperatures of each strip and the back side of the working 

surface were required for this investigation. Details of thermocouple 

installations are sketched in Figure 6. The thermocouples were made of 

28-gage (0.0125 in.) diameter chromel-alumel wire welded in a Tigtech 

Inc. model 116 SRL thermocouple welder. Each of the thermocouple beads 

was carefully flattened by using a very fine sand paper to assure 

contact with the surface. 
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The working surface strip temperatures were measured using a bomi 

inserted through a small hole in the Carolite and cemented in contact 

with the back side of the strip as shown in Figure 6a. Omega-bond 

adhesive type OB-100 was used to hold the bead to the heater strip. 

This adhesive bas good thermal conductivity and high electrical 

resistivity. Care was taken to be sure the thermocouple bead attachnd 

to the back side of the strip surface did not leave a rough spot on ch« 

upper surface of the strip. 

Temperatures of the back side of the working surface wore measured 

by attaching the thermocouple bead to the Carolite with the same 

adhesive as shown in Figure 6b. 

In order to investigate the distribution of the heat transfer 

coefficients, twelve strips were selected for measuring the working 

surface temperatures. A sketch of the flat plate and the thermocouple 

array is shown in Figure 7. Eight of these strips were provided with 

seven themwcouples each, five for determining the local heated-strip 

surface temperatures and two for the back side of the working surface 

temperatures. Each of the other four strips was provided with eleven 

thermocouples for determining the local heated-strip surface temperature 

distribution and four thermocouples for measuring the temperatures of 

the back side of the working surface. 

4. Vortex generators 

An almost endless variety of vortex generators can be conceived. 

Because of this variety, some limitations on the vortex generator design 
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were necessary. The general shape was limited to a rectangle and the 

angle was fixed at 0 degrees. Details of vortex generator geometery 

and nomenclature are shown in Figure 8. 

None of the previous workers studied the effect of vortex generator 

blade height e^ on the heat transfer performance. The study of boundary 

layer mixing devices by Schubauer and Spangenberg |4) used a vortex 

generator height e^ approximately equal to the boundary layer thicknesa 

estimated at the vortex generator position. However » Edwards and 

Alker (6) used a vortex generator height e^ greater than the boundary 

layer thicknes 6^. In the present investigation, vortex generator blade 

heists of 0.0625 , 0.125 and 0.25 in. were selected to give a range 

of 0.65 - 2.9 for the ratio of the vortex generator height to the 

boundary layer thickness. 

The results obtained by Edwards and Alker |6) and Lee (7) indicate 

that an of an incidence angle o from 15 to 20 degrees is the most 

effective for a rectangular vortex generator blade. Pearcey |3} also 

indicated that a vortex generator system with a good range of vortex 

effectiveness could be obtained with a 20 degrees angle of incidence. A 

20-degree incidence angle was used for this investigation. 

Pearcey {3) found that the most important factor in establishing an 

effective vortex pattern was the need to keep the spacing of the 

adjacent vortices greater than about three times their height especially 

for the co-rotating vortex generator blades. 



www.manaraa.com

32 

Figure 8. Councer-rocscing vorcex generators 
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In this investigation, the space/height ratio (Sg/e^) of the vortex 

generator was varied from 3 to 64. The pitch between vortex 

generator pairs and the spacing s^ between blades of the same pair were 

set to make 2 s^ as shown in Figure 8. Each of the rectangular 

vortex generator blades tested had a length 1^" 1.0 in. and a thickno»» 

Ç • 0.0625 in. 
S 

D. Instrumentation 

The data measured included free-stream and ambient air 

temperature^, the strip and back temperatures of the working surface, 

air velocities, free-stream static pressures, total pressure, and hot-

film anemometery data. 

1, Temperature sensing 

Free-stream and ambient air temperature were measured using five 

28-gage chromel-alumel thermocouples which were independently referenced 

to a Vhitcaker model BRJ14-50nrP chromel-alumel 150 "F constant 

temperature junction. Free-stream air temperature measurements were 

obtained with three thermocouples placed at different locations 

downstream of the leading edge of the plate and about four inches away 

from the plate surface. There was almost no variation of the free-

stream temperature, and the arithmetic average of the free-stream 

teatperature reading was used in calculation. The ambient air 

teoqierature was used for the calculation of radiation losses from the 

strips and was obtained from the arithmetic average of two thermocouples 

located about 12 in. away from the test section of the wind tunnel. 
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A total of 120 thermocouples were attached to the plate to measure 

the temperatures of the working and back surfaces. However, the data 

acquisition system described later in this section has only a AO-channel 

scanner. A switch system that divided the thermocouples into four 

groups of 30 thermocouples each, shown in Figure 9, was used to connect 

banks of 30 thermocouples to the scanner at one time. The switch syatom 

was manually operated in response to prompts given by the data 

acquisition computer after measrements for each group was completed. 

2. Pressure sensing 

a. Pressure instruments Total and static pressures were 

measured in the free-stream at two locations downstream of the plate 

leading edge at the middle distance between the plate surface and the 

front wall of the test section using a pitot-static tube probe. The 

free-stream static pressure distribution was measured with a static 

probe at three locations downstream of the plate leading edge. The 

pitot-static and static probes were connected to a Heriam model 34FB2 

micromanometer capable of reading 0.001 in. water. 

The static pressures on the plate surface were independently 

measured using the pressure taps on the plate surface. Four static 

pressures on the plate surface, an atmospheric reference and the 

stagnation pressure on the nosepiece were measured using a six channel 

Scanivalve and a Setra Systems model 239 pressure transducer, the output 

of which was connected to the data acquisition system. 



www.manaraa.com

3S 

Three selector 
switches etch 
2-posltlon 

Thermocwple 
panne I  
connectors 

Thermocoup les 

from the plate — 

I50*r constant 
temperature 
Junction 

To data 
acquisition 
system Y 

Figure 9 ,  Sketch of the 
switches 

multiple selector thermocouple 



www.manaraa.com

36 

b. Velocity-profile instruments Boundary layer velocity 

measurements were made with a total head probe constructed from 

stainless steel hypodermic tubing with a flattened end section to rcduao 

the velocity gradient across the opening facing into the flow. A skntch 

of the probe and the micrometer probe positioner are shown in flgurn 10. 

The opening of the tube was large enough to give a time constant for tha 

measuring system of the order of two minutes when the pressure 

measurement» were made with the micromanometer. 

The position of the boundary-layer probe in relation to the plate 

surface was found by use of a 0.001 in. least count micrometer 

adjustment probe positioner. The zero adjustment of the probe against 

the plate surface was made by advancing the probe from a position some 

distance away from the the plate until the tip of the probe and its 

image, reflected in the plate surface, just touched. It was found that 

repeatability of the zero position was within one part in one thousand 

by this method. 

3. Electrical instruments 

a. Power input The power input to the resistance heater was 

measured by obtaining the resistance of the heating strips and the dc 

current passing through it. The teoqmrature coefficients of resistance 

of the heating strips were determined using thermocouples and a Hewlett-

Packard model HP 3455A digital multimeter. Details of the beating strip 

charateristics are described in Chapter 111. 
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Heater strip current was supplied by an Electro model PS-5R 

filtered dc power supply. The do current through the heating strips was 

determined by reading the voltage across a precision shunt resistance 

and calculating the current from Ohm's Law for the resistor. 

b. Hot-film turbulence measurements Measurements of turbulence 

quantities downstream of selected configurations of vortex generators 

wore obtained using a TSI model 1227 single platinum hot-film probe of 

0.001 in. sensor diameter in conjunction with a TSI model lOlOA constant 

temperature anemometer and TSI model 1072 linéariser. The circuitry 

involved in hot-wire anemometry is shown in Figure 11. An oscilloscope 

was used to visually monitor the output signal from the hot-wire as an 

additional check on the satisfactory operation of the anemometer 

equipment. The dc and true rms voltages from the linearizer were 

measured using the data acquisition system. 

4. Data aquisition system 

All voltage and resistance readings were measured using a Heat 

Transfer Laboratory data acquisition system consisting of a Hewlett-

Packard model 9845B desktop computer, a model 3495A 40-cbannel scanner 

with low thermal offest relay contacts, and a model 3455A digital 

multimeter with one microvolt resolution. 

Thirty-eight channels on the scanner were used for experimentation. 

Thirty channels were used for measuring the outputs from each 

thermocouple group attached to the working surface. The rest of the 

scanner channels were used for measuring the outputs from five 
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thermocouples for free-stream and ambient temperatures, the pressure 

transducer, hot-film and the voltage drop across the precision resistor. 
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III. EXPERIMENTAL PROCEDURE 

A. Calibration 

Thermocouples, strip resistance and emissivity, the scanlvalve and 

pressure transducer, and the hot-wire anmmometer were calibrated before 

use. In all cases, calibrations were made using the entire system of 

sensors, connecting cables, data acquisition system and auxiliary 

equipment. 

Thermocouples were calibrated by immersing them in a Haake model 

F3 constant temperature water bath having a maximum variation of 0.18 "F 

from the preset bath temperature. The bath temperature was measured 

using a calibrated mercury-in-glass thermometer with a least count of 

0.1 *F. The thermocouples were calibrated over a temperature range 15 

"F greater than the range of use. A linear least squares data fit was 

obtained for each thermocouple; the equations thus obtained were used by 

the data acquisition system program to reduce the thermocouple voltages 

to temperature values. 

The pressure transducer was checked against a Heriam micromanometer 

with a resolution of 0.001 in. water. The transducer was referenced to 

atmospheric pressure so that the zero pressure intercept of the equation 

used to obtain the pressures from the voltage values varied with 

atmospheric conditions, while the slope was constant. One channel on 

the Scanivalve was used to determine the voltage output equivalent to 

atmospheric pressure. 
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Electrical resistance characteristics of the nickel-chromium foil 

strips used for the heated surface were measured at room temperature to 

obtain the strip length-resistance characteristics shown in Figure 12. 

Three strip samples were tested to obtain the temperature-

resistance characteristic# of the heated strip. Temperature-resistnrtc» 

data obtained for the three samples are shown In Figure 13. The 

measurement of strip resistance was accomplished by obtaining the 

voltage drop across each strip and the current passing through It. whil« 

measuring the strip temperature at five locations along its length. Th«s 

arithmetic average of she lengthwise temperature distribution was 

considered the temperature of the strip. The error analysis for these 

data indicates that for a given temperature the strip resistance can be 

calculated with an accuracy of ±0.0015 ohm using the following 

expression 

R, = Rp I 1.0 + o^( t,.t,)) (3) 

where R is the strip resistance at the strip temperature t„, R_ is the 
S # » 

resistance of the strip at the reference temperature t^, and is the 

temperature coefficient of resistivity for the strip. For equation (3), 

the result obtained was 0.00023 1/*F referenced to 8^=0.25 ohm at 

t^= 68 ®F. The value obtained for the temperature coefficient of 

resistivity agreed within a ±4.5% of that indicated by Beckwith and 

Buck 1151 for a typical nickel-chromium material. 

A TELETEMP model 44 infrared thermometer was used to estimate the 

enissivity of the strip material. The infrared thermometer was 



www.manaraa.com

42 

9  

Data measured at room 
temperature 75 °F 

8 

7 

6 

5 

4 

a. 

3 

2 

1 

0 

Strip length, ft 

Figure 12. Strip length-resistance characteristic 



www.manaraa.com

43 

. 2 7  

Data measured for 
three strips 

0.25 El + 0.00023{t_-68)] 

é 

w .25 

± 0.0015 Ohms/ft 

60 80 100 120 140 160 180 200 220 
Strip temoerature. °F 

Figure 13. Scrip cemperacwre-resiscance characteristic 



www.manaraa.com

44 

calibrated by measuring the temperature of a strip coated with 3M type 

ECP-2200 high emissivity flat black paint which has a known emissivity 

of 0.98. The measured emissivity for the painted strip was within a 

±1.0 X of that indicated by the manufacturer. The result obtained for 

the unpainted strips at the same temperature Indicated that the heated 

strips had emissivity equal to 0.45. 

The hot-wire system was calibrated in place in the test section to 

include any influences of the surroundings as discussed by Wyler ;i6(. 

A pitot-static probe was used to obtain the reference velocity at ch« 

center of the channel. Once the velocity had been adjusted, the pitot-

static probe was withdrawn from the tunnel and the hot-wire was placed 

in the stream at the same location. Free-stream temperature was 

obtained from the arithmetic average of three thermocouples in the free-

stream. 

The relationship used to obtain the velocity from the bridge 

voltage output is given by 

= S (4) 

where is the de voltage signal output from the linearizer, is the 

effective mean air velocity and S is the sensitivity factor to be 

determined from calibration. A typical calibration curve for the hot­

wire is presented in Figure 14. 
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Hot-f\1 m Probe 
TSI model 1227 (-10) 

Free-stream temperature • 75 °F 

Over heat ratio " 1.4 

Figure 14. Calibration curve for the hot-film 
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B. General Operating Procedure 

The sequence of the general operating procedure for taking heat 

transfer data is shown in detail in the flow chart in Figure 15. 

Initially» all electronic equipment and the thermocouple reference 

junction were started and allowed to stabilize. The centrifugal fan was 

started and fan controls were adjusted for the required operating 

conditions. The pitot-static and static probes were placed in the froe-

stream to adjust the operating conditions. Once the velocity and tho 

pressure gradient had been adjusted, the pitot-static probe was 

withdrawn to a location near the front wall of the test section of wind 

tunnel where no possible interaction with the flow over the plate 

surface could occur, Perodic checks on the operating condition» were 

made. 

The plate-heater current was adjusted until the heat input resulted 

in a minimum 10 difference between the free-stream and the heated 

strip surface temperatures. The maximum difference between free-stream 

and heated strip temperatures was about and a majority of the 

tests were performed with a temperature difference about of 20*F. 

Monitoring of the plate temperatures and the current passing through the 

heated strips was required until steady-state conditions were reached. 

Temperature data were recorded three times over a period of about thirty 

minutes in order to be sure a true steady-state condition had been 

reached. Then, the pressure transducer output voltages were measured. 

The electric power input, free-stream and ambient temperatures were 
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Figure 15. Flow chart for data acquisition and heat 
transfer reduced data 
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Figure 15. (continued) 
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rochockfid before measuring the output voltages for each group of 

thermocouples. Then the switch was manually turned to obtain the data 

for the next group. 

The operating procedure for obtaining hot-wire data is shown in 

detail in the flow chart in Figure 16. As was the case for obtaining 

heat transfer data, the pitot-static and static probes were used for 

adjusting the free-stream operating conditions. Once the operating 

conditions were adjusted, the pitot-static and static probes were 

withdrawn from the test section and the hot-film was placed in the froo-

Rtream to check its calibration. In order to study the behavior of the 

boundary layer and its development downstream of vortex blades, the 

probe was placed at three locations in the x-direction. The hot-film 

sensor was oriented parallel to the plate surface and perpendicular to 

the flow direction, as shown in figure 17. The probe was moved through 

8 in. in the z-direction and was traversed in the y-direction at five 

spanwise positions to obtain the mean velocity profiles and the the 

turbulence distributions downstream of a pair of vortex blades. 

The data acquisition system measured the dc and rms voltages of the 

hot-wire signal ten times to obtain a true steady-state average at each 

point. At the same time, the osilloscope was used to check for 

satisfactory function of the anemometer circuit. A listing of the 

computer program used to acquire and reduce the hot-film data run output 

is given in Appendix A. 
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\ Enlarged view 
of bot-fIII» 

Figure 17. Hot-film and velocity components referenced 

to the plate axis 
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The raw data were reduced to obtain all required information and 

the results were recorded on magnetic tape and disk for use in 

calculation of other parameters. A listing of the computer program used 

to acquire and reduce the data is given in Appendix B. 

C. Data Reduction 

Calculation of the experimental results took place in two parts. 

First, the raw data were reduced to basic dimensional quantities such as 

free-stream velocity, local velocity and its fluctuation component, 

temperature, and heat transfer rate. These quantities were then 

combined with the plate and vortex generator geometrical data and 

further reduced to non-dimensional terms such as Reynolds number, 

Stanton number, and turbulence intensity. Basic reduction of raw data 

was done using the HP 9845B desk computer. 

Data were subjected to an uncertainty analysis based on the method 

of Kline and HcClintock {17). An analysis performed for a typical set 

of data is given in Appendix C. 

1. Plate energy equation 

The conservation of energy for steady-state flow is 

Q = 9» + Qc + Of (5) 

where the terms are identifed schematically in Figure 18 and where Q is 

the local rate of heat input to the strip, and are the local rates 

of beat loss from the strip by conduction and radiation respectively, 

and is the local rate of heat loss by convection. 
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Figure 18, Schematic of energy conservation for 

a local point on heated strip 
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The generated power on the local strip surface is calculated from 

Q = R* (6) 

where is obtained from equation (3), I is the dc strip current, and 

is the strip resistance at the local surface temperature of the strip 

t^. Equation (6) con then be written as 

Q - R^( 1.0 + o^( t^- tp)) (7) 

Since the heated surface of the plate is large with relation to the 

thickness of the plate and because the %- and ^«direction temperature 

gradients are small, a one-dimensional flow of energy by conduction wa* 

assumed. The local conduction loss was calculated from 

Qc " ( kpA./ Pp) ( t." 'b) (') 

where y^ is the thickness of the plate working surface material, k^ is 

the thermal conductivity of the plate material, A. is the surface area 

of the strip, and ( t^- t^) is the local temperature difference between 

the heated strip surface and the back side of the working surface. 

The local rate of heat radiation loss was calculated from 

«, - ' A. ( 

where is the emissivity of the strip material, o is the Stefan-

Boltzmann constant. T^ is the local absolute temperature of the strip 

surface, and T, is the absolute temperature of the surroundings. The 

temperature of the surroundings was taken as the room temperature. 

Corrections for absorption in the room atmosphere and in the plastic 

tunnel wall were assumed to be negligible. The radiation geometric view 

factor was assumed to be unity as implied in equation (9). 
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The net local rate of heat loss by convection from the strip can he 

determined from equation (5), 

Qn » Q - ( Q̂ .+ Q̂ ) (10) 

The local heat transfer coefficient h is found from its definition 

h " 9,/ I t," 'o'l (':) 

where t^ is the free-stream temperature. 

2. Flow velocity and pressure 

Since the plate was placed in an open suction type wind tunnel and 

the test section was on the suction side of the fan, the free-stream 

inlet density was calculated from the ideal gas law 

" < p...- p.'/' ".IrV (':) 

where p^^^ is atmospheric pressure obtained from a barometer, p^ is the 

static pressure of the air at the leading edge of the plate, and ts 

the gas constant for air. 

Using the pitot tube pressure difference between the free-stream 

stagnation pressure p^ and the local static pressure of air p^^^^ and 

the calculated air density, the local free-stream velocity at any *-

distance from the leading edge of the plate was calculated using 

Bernoulli's equation, given by 

' I P.- P.(x)'/ <"> 

To obtain the velocity gradient for the free-stream, static 

pressures were measured at different x-locations using a static tube, 

and from equation (13) the local free-stream velocities were determined. 

The velocities were plotted as a function of x and a least squares fit 
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was obtained to determine the velocity gradient (dU^/dx). The pressure 

gradient in the free-stream can be obtained by differentiation of 

Bernoulli's equation, 

(dp/dx) - - ( g^) ( dU^/ dx ) (14) 

The local Reynolds number for an experimental point at a distan&w x 

from the leading edge of the plate was calculated from 

»'(*,  •  I  « ".( .) /  <"> 

where is the kinematic viscosity of air evaluated at the local mean 

boundary layer temperature. 

The value of h from equation (11) and from equation (13) were 

used to calculate the local Stanton number for an experimental point 

from the Stanton number definition 

®'(x.a) * ( ̂ (x,z/ ^ ^aVo(x)^ ^ **** 

is the specific he< 
? 

boundary layer temperature. 

where is the specific heat of air evaluated at the local mean 
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IV. PRELIMINARY EVALUATION TESTS 

A. Evaluation Tosts of the Equipment and Hoasuroment instrumentât ion 

A preliminary series of the evaluation tests was carried out with 

no vortex generators attached to the plate surface to check the wind 

tunnel and the plate equipment against earlier analytical and 

experimental work. 

!• Presaure-aradient measurement 

The pressure distributions for this series of tests are shown in 

Figure 19 as the nondimensional pressure gradient parameter as a 

function of the distance (x/L) measured from the leading edge of the 

plate. That data show in Figure 19 are fitted with least squares lines 

using values of the static pressure distribution on the plate surface 

measured by the pressure transducer and those measured by the static 

probe for the free-stream. The three average pressure gradients shown 

will be referred to later. 

2. Heat transfer distribution 

The Stanton number distribution measured on the heated surface was 

compared with the analytical solution presented by Kays and Crawford 

(IS) for a zero pressure gradient, laminar boundary layer flow with a 

uniform convective heat flux wall and an unheated starting length, 

s'(,) = »•«' «'li)' 

I 1.0 - (17) 

For fully turbulent flow, Kays and Crawford [18] give 
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= 0.030 Pr'° 4 (18) 

whore Pr is the Prandtl number and ts the Reynolds number based on 

a free-stream velocity U^. The Reynolds number at any location x is 

where is the kinematic viscosity for air, and % is measured along thm 

plate axis from the plane of the leading edge. The distance moasurod 

from the stagnation line is different from that measured along the pUto 

axis by about one percent; the error is included in the uncertainty 

analysis for Reynolds number. 

The measured local span-averaged Stanton number distributions are 

presented in figures 20 through 22 as the Stanton number corrected for 

unheated length St^^^^ as a function of Reynolds number for the three 

different levels of free-stream pressure gradients. The results 

obtained at the lowest free-stream pressure gradient shown in Figure 20 

indicate that for Reynolds number Re^^^< 10^ the local span-averaged 

Stanton numbers are in agreement within ±3 percent of that predicted 

from equation (17), and at Re^^^» 10^ they are about 10 percent higher 

3 
than that given by equation (17), For (dp/dx) = -0.02 Ib^/ft , Figure 

21 shows that for Re^^)^ 10^ the local span-averaged Stanton number was 

within ±2.5 percent of that predicted, and 11 percent higher for 

Rej^j> 10^. For the highest pressure gradient. Figure 22 shows that for 

of Reynolds number Re^^y< 3x10* the local span-averaged Stanton number 

was within ±5 percent of that given by equation (17), and for 

3xl0*< Re^jjj < 6x10* it was about 15 percent higher than that predicted 

for a laminar boundary layer with zero pressure gradient. 
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Figure 21. Heat transfer distribution along the smooth plate for (dp/dx) = -0.02 
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The magnitude of the conduction and radiation losses from the 

limatud strips varied with the strip, back side of the working surface 

and ambient temperatures. The radiation loss was in a range of 7% to 

2S« of the total heat input. The conduction loss was in a range of 

about 3« to 15% of the total heat input. 

The conclusion reached from Figures 20 through 22 is that there is 

good agreement between heat transfer data measured in this facility ami 

the analytical solution of Kays and Crawford (18|, equation (17). Exact 

agreement should not be expected due to the approximate constant heat 

flux condition dictated by physical construction of the plate. 

Examination of Figures 20. 21 and 22 suggest that the transition 

region takes place at a Reynolds number of about 10^ for the two lower 

pressure gradients and at about 4x10* for the highest pressure gradient. 

3, Laminar boundary layer profiles 

In order to check that the behavior of the boundary layer was 

laminar as indicated by the heat transfer results, mean velocity profile 

data were measured using the total head tube for each of the three 

favorable free-stream pressure gradients. Profile data were obtained at 

three positions downstream of the plate leading edge. The measurements 

were taken on the plate centerline as well as in the z-direction. When 

the experimental boundary layer thickness was required in a calculation, 

it was taken as the distance above the surface of the plate where the 

boundary layer velocity was 0.995 of the free-stream velocity. Typical 

profiles for Reynolds numbers in the laminar range are shown in Figures 

23, 24 and 25. 
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The velocity profiles obtained wore compared with the PohlhmisQit 

polynominal approximation (19) to the laminar boundary layer over a flat 

plate with a free-stream pressure gradient 

u/U^ - 1 2y - 2y^+ y*I + A* ? ( 1 - ? y* (20) 

where, y • ( y / 6 ) 

and K " ( 6*/ 6 v ) < dO / dx ) (21) 
X o o 

The terms in the square brackets represent zero pressure gradient 

conditions, while the terms proportional to are first-order presmwre 

gradient corrections. 

The measured velocity profile data agree well with equation (20) 

for a laminar boundary layer with a specified free-stream pressure 

gradient. Little effect on the boundary layer profiles was expecied in 

the region close to the plate surface due to the tip clearance effoct of 

the total head tube and the temperature difference between the place 

surface and the free-stream at each location of measurement. However, 

Figures 23 through 25 show small variations from equation (20). 

Total head tube surveys were made to help establish the transition 

of the boundary layer from laminar to turbulent flow for the different 

pressure gradients. From these surveys and the heat transfer data, 

3 
transition for (dp/dx) » -0.01 Ib^/ft was considered to start at 

5 3 
1.5x10 . For (dp/dx) = -0.02 Ib^/ft , the transition is at 

2x10^ and for the highest free-stream pressure gradient, 

5 
transition occurred at 4.5x10 . 
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The data obtained for both heat transfer distributions and boundary 

layer profile tests show that the test plate boundary layer without 

vortex generators behaved as a highly two-dimensional laminar boundary 

flow over a plate surface with constant heat flux. 

It was found that for the three free-stream pressure gradients the 

overall heat transfer coefficients for the plate were about S, 6.1 and 

6.3 poreent reapoetively over that predicted for a laminar boundary 

layer at %@ro pressure gradient for all data. If only laminar Reynold# 

number» are included, overall coefficient» were 4.5, 5.1 and 5.0 percent 

respectively. 

The overall heat transfer coefficients obtained at the three 

different pressure gradients show small increases over that predicted 

for laminar flow boundary layer at zero pressure gradients and indicate 

that the overall heat transfer is not a strong function of pressure 

gradients used. In addition, the data obtained at the lowest pressure 

3 
gradient (dp/dx) = -0,01 Ib^/ft show that there is little difference 

from that predicted for a laminar boundary layer flow at zero pressure 

gradient. In the chapters following, the lowest pressure gradient is 

considered equivalent to a zero pressure gradient. 
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V. RESULTS AND DISCUSSION 

The heat transfer data reduced using the methods described in 

Chapter lit will be presented graphically as Stanton number versus 

Reynolds number for different configurations of vortex generators and 

throe levels of favorable free-stream pressure gradient. These data ar«< 

also given in tabular form in Appendix D. The earlier results obtained 

from the evaluation tests with no vortex generator blades confirmed that 

the test boundary layer was a highly two-dimensional laminar flow. 

Therefore, at a specified local Reynolds number the improvement of local 

heat transfer rates due to the vortex generators will be referenced to 

that obtained from the prediction of reference (IS) for laminar boundary 

layer on a plain plate given by equation (17). 

Data are presented for a row of counter-rotating vortex generator 

blades with pitch equal to two times the blade spacing for spacings 5^= 

0,75, 1,0, 2.0 and 4.0 in., vortex blade heights e^= 0.0625, 0.125 and 

0,25 in, and three levels of free-stream pressure gradient. 

The heat transfer results are used as a basis for evaluation of the 

effect of the different configurations of vortex generator blades on 

enhancement of heat transfer. The behavior of the boundary layer and 

its development downstream of some of the configurations of vortex 

generators will be presented and the interaction between the flow 

structure and the improvement of heat transfer rate will be discussed. 

The combined experimental results are used as a basis for a proposed set 

of guidelines for the design of more efficient surfaces with vortex 

generators. 
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A. Hoût Transfer Porformanco at (dp/dx) » 0 

It was dntermined from the series of evaluation tests with no 

vortex generators that there is almost no difference between the very 

3 
small pressure gradient (dp/dx) « -0.01 Ib^/ft and a zero pressure 

gradient with boundary layer transition at Re^^y* l.SxlO^. 

I. local span-averaged heat transfer results 

Data are presented in the form of the local span-averaged Stanton 

number corrected for unheated starting length as a function of the local 

Reynolds number for three different heights of vortex generator blades. 

Each row of vortex generator blades of the same height e^ was tested at 

spaces of 0.75, 1.0, 2.0 and 4.0 in. between the vortex blades. 

a. Effect of 0.0625 in. Figure 26 shows the local span-

averaged Stanton number distribution as a function of the local 

Reynolds number Re^^^ for the different spaces with the smallest 

height of vortex generator blades, e^» 0.0625 in. 

Tlie data show that the presence of the vortex generator blades has 

3 marked effect on the heat transfer coefficients from the plate 

surface. Figure 26 shows that the vortex generators improve the local 

span-averaged Stanton number over that obtained from equation (17), in 

which the solid line representing for a smooth plate with a laminar 

boundary layer. 

For all spacings between vortex blades, the local span-averaged 

Stanton numbers St^^^^ show higher values in the lowest Reynolds number 
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regions. For the larger spacings = 4.0 and 2.0 in., values of 

4 4 
in the Reynolds number range from 3.2x10 to 5x10 decline below that 

for the laminar boundary layer flow over a plain surface, but rise to 

higher values at larger Reynolds numbers. For the smaller spacings s^= 

1.0 and 0.75 in., the local Stanton numbers lie above the smooth 

plate line and again move to higher values beginning at a Reynolds 

4 
number of 5x10 . Separation of the data points from the laminar 

correlation line occurs earlier than without vortex generators and 

varies depending on the space between the vortex generator blades. 

Generally, the heat trasfer data have a larger increase over the lino 

representing laminar flows as the space between vortex blades decreases. 

The largest blade spacing, s^» 4.0 in. does not appear to complete any 

transition to the turbulent correlation. 

The magnitudes of the increases in Stanton number are shown in 

Figure 27 as distributions of the ratio versus the 

distance downstream from the plate leading edge given as (x/L) where L 

is the length of the plate and h^^^^ is that obtained from the 

prediction equation (17). 

For all blade arrangements. Figure 27 indicates that the local 

span-averaged coefficients increase non-linearly with distance 

downstream of the vortex blades. Immediately behind the blades the 

enhancement of heat transfer coefficients is from 1 20 to 1 70 times, 

declining to minimum values at about x = 0,2 L and rising to larger 

values downstream. 
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The minimum improvement varies depending on the spacing between the 

htndfls. In the case of larger spaces s^» 4.0 and 2.0 in., the minimum 

improvement falls below unity to about 0.9 at about x = 0.20 L, and 

increases to about 1.9 to 2.0 at x = 0.9 L. For the smaller spacing* 

Sg" 1.0 and 0.75 in. the minimum improvement of 1.15 to 1.35 percent 

occurs At about x « 0.23 L and increases to 2.35. 

Figure 27 shows that the vortex generator with the smallest space 

between the blades 0.75 in. is more effective and gives higher local 

span-averaged enhancement of heat transfer coefficients than for larger 

spaces between the blades at the same free-stream conditions. 

b. Effect of e„> 0.125 in. Figure 28 shows the local span-

averaged Stanton number as a function of Reynolds number for the 

different blade spacing* with height e^» 0 125 in. 

The data do not deviate as far from the predicted laminar flow line 

nor do they approach the turbulent correlation as quickly when compared 

with the blades of e » 0 0625 in. The smallest space between blades s = 
g 8 

0.75 in. again provides the best local span-averaged Stanton number, but 

does not reach the values obtained for e^= 0.0625 in, shown in Figure 

26. The transition region moves to a slightly higher Reynolds number of 

4 about 6x10 compared with e^= 0.0625 in. 

Figure 29 shows the distribution of the enhancement of heat 

transfer coefficient ^(x)o' versus (x/L) downstream of the plate 

leading edge. In the range x = 0.12 L to x - 0.25 L, the improvement of 

heat transfer coefficient starts to decrease toward unity with only a 
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smmll offoct of evident. In tho region x 2 0.25 L. the enhnncemciti 

rises again with'the smallest space between blades s^= 0.75 in. 

indicating the greatest improvement, as was the case of e^*> 0.0625 in. 

Enhancement for s^= 1.0 in. and 2.0 in., is roughly equal with the 

smallest improvement shown for 4.0 in. 

c. Effect of o,,« 0.25 in. Figure 30 shows the Stanton number 

distribution versus the local Reynolds number for the different spaeni» 

with the largest height of vortex generator blades e^" 0.25 in. Th# 

measured local span-averaged Stanton numbers are more closely grouped In 

the transition region than was observed for vortex blade heights 

0.0625 and 0.125 in. shown in Figures 26 and 28 respectively. 

Once more the data for the 0.75 in. space between blades have 

generally higher local span-averaged Stanton numbers than for the larger 

spaces. 

Figure 31 shows the magnitudes of the enhancement of heat transfer 

coefficients ^(x)ol versus (%/L). For the smaller spaces 

0.75, l.O and 2.0 in.. Figure 31 indicates that the values obtained for 

the local span-averaged enhancement of heat transfer coefficient are 

less than that obtained with the smaller heights of vortex blades at the 

same free-stream conditions shown in Figures 27 and 29. 

It was not possible to establish a Reynolds number range for a 

transition with e = 0.25 in. due to the erratic values obtained for 
g 

different arrangements of the space between vortex blades. For the 

smaller spaces s^= 0.75, 1.0 and 2.0 in., the minimum local span-
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avomgod onhancomont of hoAt transfer coefficient occurs at about x -

0.2 L and Is higher than unity. 

2. Ovcroll heat transfer results 

The enhancement of the overall heat transfer coefficient is 

presented as a ratio of the measured overall heat transfer coefficient 

over the plate surface with vortex generators h^ to the overall heat 

transfer coefficient with no vortex blades attached to the plate h^. 

The measured overall heat transfer coefficient h^ was obtained by 

numerically integrating of the measured local span-averaged heat 

transfer coefficient distribution h^^)^ over the plate surface with 

respect to the distance downstream of the plate leading edge. The 

predicted overall heat transfer coefficient h^ was obtained by 

integrating the predicted heat transfer coefficient distribution h^^^^ 

with respect to distance downstream for a laminar boundary layer 

obtained from equation (17) at the same free-stream conditions. 

Figure 32 shows the enhancement of the overall heat transfer 

coefficient as a function of the space/height ratio of vortex blades for 

different blade vortex heights. Figure 32 also shows the enhancement of 

the overall heat transfer coefficient as a function of (e^/A^) for 

various spaces between vortex blades, where 6^ is the predicted laminar 

boundary layer thickness estimated at the location of the row of vortex 

blades Xg measured downstream of the leading edge of the plate. 

An equation of the form 

(h/h.) = <=„ 'VV" (22) 



www.manaraa.com

e.?s m 
0.0625 in 
0.125 In 
0.25 in 

2 . 0  2 .0  

o 
ix 

\ 

CD 
IX 

w 

dP/dX - 0.0 

10 80 1 
(Sg/eg ) 

Figure 32. Enhancement of the overaîî in-ai iransler coef j ic 

wilh 2Mro pressure yrjdi«-jit 



www.manaraa.com

81 

may bo written for each vortex blade height. A linear regression 

analysis was used to obtain the constants c^ and cl. It is found that 

the values of the constants c^ and cl vary with the height of the vortex 

blades. The lines representing equation (22) for the tested heights of 

the vortex blades are shown in Figure 32. 

From the data shown in Figure 32, it can be observed that the 

amount of the enhancement of the overall heat transfer coefficient 

depends on the ratios of (s^/e^) and (e^/6^). The enhancement of the 

overall heat transfer coefficient at a constant space/height ratio 

increases with decreasing blade height. Figure 32 shows that the be»t 

improvement of the overall heat coefficient at a constant space between 

the vortex blade* is obtained at a vortex blade height smaller than the 

estimated boundary layer thickness at the location of the vortex 

generator blades except for the largest space between the vortex blades 

8^» 4.0 in. 

It is observed that the behavior of the arrangement of vortex 

generator blade* with the largest space and height. » » 4.0 in. and e = 

0.25 in , is different than that obtained for all other configurations 

and arrangements of vortex generator blades. When these blades are 

installed, only four blades are present and the distance from the tunnel 

wall to the nearest blade is 1,0 in. There is a possible interaction 

between the vorticity produced by the nearest blade and the wind tunnel 

wall. Although some interaction possibly occurs with all blades, the 

small number of blades present in this case may permit only the two 

blades near the centerline to operate without side wall effects. 
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3 
B. Hoat Transfer Performance at (dp/dx)* -0.02 lb{/ft 

The data below are given in the aame format as for the the zero 

pressure gradient case. 

I. Local span-averaged hoat transfer results 

The blade heights and »pactngs used are the same as for the /.ero 

pressure gradient. 

a. Effect of e • 0.0625 In. Figure 33 shows local span-

averaged Stanton number distribution as a function of the local 

Reynolds number for different spaces with the smallest height 

of the vortex blades e^> 0.0625 in. For all spacing* between blades, 

the measured local span-averaged Stanton numbers are higher than those 

obtained from equation (17) for a smooth plate with a laminar boundary 

layer. The value of the local span-averaged Stanton number at a 

constant Reynolds number increases with decreasing space between vortex 

blades. 

Figure 34 shows the distributions of local span-averaged 

enhancement of heat transfer coefficient over the plate surface given as 

the ratio of ^(x)o' versus the distance downstream measured from 

the plate leading edge given as (x/L). For all arrangements of vortex 

blades, the local span-averaged enhancement of heat transfer coefficient 

is about 1.4 times immediately behind the vortex blades and then falls 

to a minimum improvement at about x = 0.20 L and then starts to rise 

further downstream. The minimum improvement varies depending on the 
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space between vortex blades with the minimum improvement at about x = 

0.25 I» and 0.23 L for the smaller spacing between vortex blades s^» 0.75 

and 1.0 in. respectively. For the larger spacings s^» 2.0 and 4.0 in., 

the minimum improvement is about 10 percent higher than that for a plain 

plate, and occurs at location x equal to about 0.20 L from the plate 

leading edge. 

A comparison of Figures 27 and 34 shows that the local span-

averaged mnhancement of heat transfer coefficients increases with 

increasing level of free-stream pressure gradient for the larger 

spacings 2.0 and 4.0 in. 

b. Effect of e » 0,125 In. Figure 35 shows distributions of 

the local span-averaged Stanton number versus Reynolds number for 

different arrangements of vortex blades with height e^« 0.125 in. The 

distributions have the same trends as those obtained at zero pressure 

gradient shown in Figure 28, The results shown in Figure 35 are 

presented in Figure 36 in terms of the local span-averaged enhancement 

of heat transfer coefficient versus distance (x/L) downstream of the 

plate leading edge. The effect of the free-stream pressure gradient on 

the local span-averaged enhancement appears small as shown by comparing 

Figures 36 and 29, 

Figure 36 shows that the heat transfer coefficient distributions 

increase with decreasing space between the vortex blades, but the 

improvement is not generally as large as for the smallest height e^= 

0.0625 in shown in Figure 34, 
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The minimum improvement occurs at about x = 0.20 L for the spacings 

Sg= 0.75, 1.0 and 2.0 in. shown in Figure 36. 

Ç. Effect of Ogj 0.25 in. Figure 37 shows the span-averaged 

Stanton number versus the local Reynolds number for the same 

arrangements of vortex blades as before, but with the largest height of 

vortex blade e^" 0.25 in. The data are more closely grouped than with 

the blade height 0.125 in. The smallest blade spacing again has 

higher local span-averaged Stanton numbers than those obtained for the 

larger spacing. At Reynolds numbers below 2x10^. an apperant laminar to 

turbulent transition occurs for each of the two smallest spacing» but 

not for the two largest spacing*, which exhibit no clear transition to 

the turbulent correlation. 

Figure 38 gives the enhancement of heat transfer coefficient versus 

distance downstream from the plate leading edge. For the smaller 

spacings 0,75 and 1.0 in., the improvement of the local span-

averaged heat transfer coefficients fall to minimum values at about x = 

0,27 L but the larger spacings 2,0 and 4,0 In, do not appear to have 

a minimum enhancement and increase a|eM>st linearly with the distance %. 

This behavior is similar to that obtained for the same arrangements and 

height of vortex blades at zero free-stream pressure gradient shown in 

Figure 31, 

2, Overall heat transfer results 

Figure 39 shows the enhancement of the overall heat transfer 

coefficient as a function of space/height ratio of vortex blades and the 
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lines roprosonting oquation (22) for the three heights of vortex blades 

3 
at (dp/dx) « -0.02 Ib^/ft . For the smallest blade height, the amount 

of enhancement of the overall heat transfer coefficients at a constant 

spoce/hotght ratio of vortex blades is higher than that obtained with 

thn larger blade heights. For the blade heights of vortex blades 

0.125 and 0.25 in. at a constant (Sg/e^), Figure 39 shows that they are 

of roughly equal strength on improvement of the overall heat transfer 

coefficient. 

It Is clear that the enhancement of the overall heat transfer 

coefficients at a constant io ) increase with decreasing the space 

between the vortex blades. Figure 39 also shows that the best 

improvement of the overall heat transfer coefficient at a constant space 

between vortex blades is obtained with a ratio (e /6 ) of about 0.77, 

Tlie enhancement falls to minimum values at a blade height e^ equal to 

about 1,6 6^, then starts to rise to higher improvement values with 

increasing the ratio (e /6 ) but does not reach that obtained at 

^VV * * 
The effect of the free-stream pressure gradients on the enhancement 

of the overall heat transfer coefficients can be obtained by comparing 

the data shown in Figure 39 with that presented at zero pressure 

gradient shown in Figure 32. A small increase of the level of the 

pressure gradient appears to have a small effect on the improvement of 

the overall heat transfer coefficients, especially for the arrangements 

of vortex generator blades with smaller spacing between blades and 

smallest height of blade. 
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C. Hoat Transfer Performance at (dp/dx)= -0.04 Ib^/ft^ 

Data are presented below for a row of counter-rotating vortex 

blades in four different arrangements of the space between the vortex 

blades, s^» 0.75, 1.0, 2.0 and 4.0 in. Each arrangement was tested for 

the throe different heights of the vortex blades. 

I. Local Hpan-avwraged heat transfer results 

Tlie blade heights and spacing* used are the same as for (dp/dx) " 

3 
-0.02 Ib^/ft and the zero pressure gradient. 

5- Effect of 0.0625 jU». Figure 40 shows the distributions 

of the measured local span-averaged Stanton number versus Reynolds 

number for the different spaces with the smallest height of vortex 

blades e > 0.0625 in. For blade spacing* s » 0.75 in.and 1.0 in., the 
S g 

local span-averaged Stanton number is larger than for the spacing» 

2.0 in. and 4.0 in. at Reynolds numbers below about 3x10^. The data for 

all spacing» appear to go through a transition from the laminar 

correlation to the turbulent correlation. The two smallest spacing» 

have several points on the turbulent correlation. In the case of the 

largest spacing s^= 4.0 in,, the values of the measured local span-

averaged Stanton number in the Reynolds number range from 5x10^ to 

1.2x10^ are on the laminar correlation line, indicating no enhancement 

was obtained in this region. 

Figure 41 shows the distributions of the local span-averaged 

enhancement of heat transfer coefficient over the plate surfaces versus 
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tho distance x downstronm measured from the plate leading edge 

roforonced to the plate length L. Tho enhancement ratio h^^^) 

at the same (x/L) values ore larger than those obtained with (dp/dx) * 

3 
•0.02 tb^/ft in Figure 34 except for Sg= 4.0 in. which has lower 

values. 

In Figure 41, the minimum improvement of the span-averaged heat 

transfer coefficients are obtained at about x • 0.2 L for both s » 0.75 
S 

and 1.0 in., and at about x • 0.18 L for 2.0 in. It is apparent 

that the arrangements of the vortex blades with spacing* s^« 0.75 and 

1.0 in. have an equal effect on the enhancement of the local span-

averaged heat transfer coefficients. 

b, Effect of e„> 0.125 in. Figure 42 shows the data for local 

span-averaged Stanton number as a function of Reynolds number with a 

vortex blade height e^» 0,125 in. In Figure 42, the span-averaged 

Stanton numbers at the same Reynold* number are less than those obtained 

with a blade height e « 0 0625 in. 
8 

Figure 42 shows that the smallest blade spacing# make a complete 

transition to the region of the turbulent correlation before Re^^y^ 

4%10^, while the larger spacing# are still between the laminar and 

5 
turbulent correlations at 4x10 . 

Figure 43 shows the distributions of the local span-averaged 

enhancement ratio versus the distance downstream (x/L). 

For both 0.75 and 1.0 in., the minimum improvement of the local 

span-averaged beat transfer coefficients is observed at about x = 
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0.22 L. The blades with 2.0 and 4.0 In. do not show any obvious 

minimum. 

The effect of different levels of free-stream pressure gradient on 

the local span-averaged enhancement with the same arrangements of vortex 

generator blades can be observed by comparing Figures 43 and 36. 

Improvement of the local span-averaged heat transfer coefficient for 

0.75 in. and s^" 1.0 In. Increases by Increasing free-stream pressure 

gradient from -0.02 Ib^/ft^ to -0.04 Ib^/ft^. 

c. Effect of » • 0.25 In. Figure 44 gives the local span-

averaged Stanton number data versus local Reynolds number for vortex 

blade height 0.25 in. As with the previous data, the local span-

averaged Stanton number at the same Reynolds number increases with 

decreasing space between the vortex blades. The data diverge from the 

the lines representing the laminar boundary layer correlation and again 

the two smallest blade spacing» make a transition to turbulent regime 

while the others do not. High Reynolds number data for both s^» 

0.75 in. and l.O in. are significantly above the turbulent 

correlation line. 

Figure 45 shows the distributions of the local span-averaged 

enhancement of beat transfer coefficient over the plate surface as a 

function of the distance x measured downstream from the plate leading 

edge. Comparison of Figure 45 and 43 show that for small spacings, 

larger enhancement exists at larger (x/L) with e^» 0.25 in. Coiiq»arison 

of Figure 45 and Figure 38 shows a significant increase in enhancement 

at hi^ Reynolds numbers with e^= 0.25 in. 
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2. Overall heat transfer results 

Figure 46 shows the enhancement of the overall heat transfer 

coefficients versus the space/height ratio of vortex blades for the 

three different heights of vortex blades. Also, it shows overall 

enhancement as a function of the heights of vortex blades referenced to 

the thickness of the laminar boundary layer at the location of the 

blades downstream of the plate loading edge. For all three blade 

heights and arrangements of the blades, the enhancement of the overall 

heat transfer coefficients is higher than those obtained at lower levels 

of the free-stream pressure gradients shown in Figures 32 and 39. The 

trend of the distributions of the enhancement of the overall heat 

transfer coefficient are quite similar for all the three levels of the 

free-stream pressure gradients. As shown in Figure 46, the enhancement 

of the overall heat transfer coefficients at a constant (Sg/e^) 

increases with decreasing the height of the vortex blades. Also, it is 

clear that the enhancement of the overall heat transfer coefficients at 

a constant (e /ft ) increase with decreasing the space between the vortex 

blades. 

For all the spacing between the vortex blades, the minimum 

enhancement of the overall heat transfer coefficients is obtained at a 

height of vortex blade about two times the laminar boundary layer 

thickness at the location of the vortex blades. 
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D. Summary of the Effects of Vortex Generators on Overall Heat Transfer 

Coefficient 

A correlation that explains how various configrations and 

arrangements of vortex generator blades are interrelated with the amount 

of enhancement over a flat plate surface can be obtained from the data. 

The correlation should useful for design purposes as well as an aid to 

understanding the complex thermal hydraulics involved in the flows 

studied. The data used are those from Figures 32, 39 and 46. 

A regression analysis was used to aid in interpretation of the data 

and in obtaining a relationship between the variables involved. It was 

found that the best observed function may be made in the empirical form 

<y '•o' • "o • ' W"" 

where (h / h ) is the enhancement of the overall heat transfer 
S ® 

coefficients, h , referenced to that for laminar flow, h . at the same 
o o 

range of Reynold* number. The ratio (» /e ) is the space/height ratio 

for the vortex generator blades, 6^ is the boundary layer thickness 

estimated at the location of the row of vortex generator blades, x^, on 

the plate surface measured from the plate leading edge. It was found 

that the constants m^, ml and mZ varied with the free-stream pressure 

gradients. 

* ^ ml 
The variation of the parameter (h /h )/(e /6 ) with (s /e ) is 

o ^ o o # # 

shown in Figures 47 through 49 for the three pressure gradients. These 

figures indicate that the enhancement of the overall heat transfer 

coefficient increases with decreasing (s /e ) or (e /& ). On the other 
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hand, the general plate performance was significantly improved by using 

smaller space/height ratio of vortex blades especially when it was 

accomplished with smallest (e^/d^) ratio. 

These figures or equation (23) can be used to provide preliminary 

guidelines for the design of surfaces with vortex generators. It should 

be noted that these figures and the equation are valid only for a single 

row of blades oriented at ±20 degrees to the flow. 

The free-stream velocity, pressure gradient and range of Reynold* 

number must be available or estimated for the plate surface to be 

designed. A location of the vortex blades at a distance x^ aft of the 

plate leading edge and a height of vortex blades are selected. The 

appropriate constants m^, ml and m2 are selected according to the free-

stream conditions. Then, either the transverse space is selected to 

obtain a desired enhancement from equation (23) or the enhancement i* 

chosen and the spacing obtained by solving equation (23) for The 

results obtained in the preceding parametric study suggest that e^ be no 

larger than the boundary layer thickness expected without vortex 

generators at the chosen location. 

E. Boundary Layer and Turbulence Development 

The results of the span-averaged and overall enhancement do not 

provide details of the flow downstream of the blades. An in-depth study 

of these details is beyond the scope of this investigation, however, a 

series of measurements of mean velocity and longitudinal component of 
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fluctuating velocity was mode downstream of selected vortex generator 

configurations. 

The first group of measurements was made with a blade spacing of 

2.0 in. and the three heights of blades used previously. In order to 

find the vortex generator effects on the boundary layer, a plane 

0.032 in. above and parallel to the plate surface was chosen for 

4 
spanwise hot-film anemometer traverses at Reynolds numbers of 6x10 , 

1.Zxlof and 1.8x10^. 

The decay of the vortices downstream of the blades may be described 

by a mean velocity decay factor defined as 

- I "«(x, • I ' Vx) <"> 

Note that fully-diffused wakes would have a decay factor of zero. The 

decay factor, longitudinal turbulence intensity and local enhancement 

ratio I hj^ h^^^g) were plotted and compared for each plate height, 

in the figures discussed below, the blade locations and sense of vortex 

rotation are shown along the abscissa and just below it. The span 

averaged parameters for the blade pair on the longitudinal plate 

centerline were also calculated for the central pair of blades at the 

centerline. The data given in Figure 50 for e^= 0.25 in. show that the 

wake areas at this Reynolds number just downstream of the vortex 

generators are outlined clearly by the data for the turbulence intensity 

and the decay factor. The peak-to-peak variation in the enhancement 

ratio is about 0.30 and the span-averaged enhancement ratio is 1.23. 

The span-averaged decay factor is 0.042. Figure 51 is for the same flow 
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conditions but at a Reynolds number of 1.2x10^. The decay factor and 

turbulence intensity data here show that the wakes are less sharply 

defined than In Figure 50. The local decay factor D , . at (2%/s ) = 

±2.0 is increased over D . . at (2%/s ) = ±1.0 and (2%/s ) " ±3.0 but 
UvX»s/ g g 

4 
the span-averaged decay factor is 0.031, loss than at 6x10 . The 

span-averaged enhancement ratio has increased to 1.37. Figure 52 shows 

further diffusion of the wakes, with the span-averaged decay factor 

increasing to 0.026 and a continuing increase in enhancement ratio to 

1.77. 

Figures 53, 54 and 55 for e^» 0.125 in. show the same general 

trends. However, tht? wakes are more sharply defined for all Reynolds 

Hwmber* and for corresponding Reynolds numbers have lower span-averaged 

enhancement ratios. Moreover, enhancement is not as uniform along the 

span as for 0.25 in. 

The data for e^w 0.0625 in. in Figure 56 show relatively much 

steeper peaks and valleys for the turbulence intensity and widely 

oscillating values of enhancement ratio. The span-averaged enhancement 

ratio is I.OS. Figure 57 shows a large variation in enhancement ratio 

with span-averaged value of 1.22. Some spanwise spreading of the 

turbulence intensity is evident In Figure 56, one vortex at (2z/s^) 

= +2.0 has nearly disappeared and the enhancement ratio, while still 

appreciable, is much less than for the region near (22/s^) = -2.0. The 

span-averaged enhancement ratio is 2.03. 



www.manaraa.com

2 .6  

2.4 

® 2.2  

t ,  
m 
O 
X 1.8 

Ç , . s  
N 

£ 1.4 
X t—i 

1.2 

1 

. 8  

.6 

eg " 0,25 in. Re(x)" 1.8x10® 

-6 

e 

< 

tPa 

Q 

V̂ -

à 

4 

% 

«t» "V 

° o° 

• 

V" 

% 

• 
• 
• 03 

Oq 

) l1 ' i ^ i ' i ' 1 '} ' 1 ' i ' 0 
(2 Z/  Sg)  

I I I 

• 
• 
• 

TL fCl 

12 

10 
• 

8 

X 
r-i 

N 

X 
s.* 
3 

0 

ZLl. 

.35 

.3 

.25 

:L1 
. 1  

N 

.05 X 

0 

-.05 

. 1  

.15 

. 2  

.25 

c? 

Figure 52. Spflnvise variation in z) ^uCx z) behind row 

rnuntcr-rrtatirg vori^x b:-dcs with e = 0.25 in. at Re, = 18x10^ 
S (x) 

of 



www.manaraa.com

© 

2 .6  

2.4 

2 . 2  

L  
-I 
0 
X 1.8 
w 
c 

m  1 . 6  
N 

1 1.4 
c 
-I 

1.2 

1 

. 8  

.8 

e 9 0.125 in. Re(x)* 6x10^ 

0» 
<1 

03 

< # • 

< 

° < 
• 

9 

% 

a 
a 

< 

a 

• 
. 
• 

<k3 

Vo 
<• 

• 

-6 

qgjjùPjSnPlP 

)  ' -I  • i  • - ] ' ) •  jl  •  W  '  ^  
(2 %/ Sg)  

X 

12 

10 

8 

• 

t 
m 

N 

G X 
3 

0 

£n 

.35 

.3 

.25 

. 2 <  

.15 I 

. 1  
N 

.05 X 

0 

.05 

- . 1  

-.15 

. 2  

.25 

cf 

Figure 53, Spnnwisc variation in ib(x,a)g/h(x)o)' ''""tx.r) °u(x.z) behind r™ 

counter-rotating vortex blades with 0.125 in. at Rê ŷ» 6x10̂  
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In general, the span-averaged enhancement is lower for e^« 0.125in. 

than for the other blade heights. 

The span-averaged data for the single blade pair are given in 

Table 1 and are plotted in Figure 59. The decay factors for e^" 

0.25 in. decreases from about 0.04 to the range 0.02 to 0.025 as 

Reynolds number increases, whereas the decay factor for e^» 0.0625 in. 

remains fairly constant at about 0.025. The x-component of the 

turbulence intensity does not have a large change for e^" 0.125 in. or 

A » 0.25 in., but for e » 0.0625 in., the turbulence intensity nearly 

doubles over the Reynolds number range. Apparently, when the decay 

factor is declining, the x-component of the turbulence intensity remains 

relatively stable, but when the decay factor is nearly constant, the 

turbulence component increases markedly. Although only this single 

plane was surveyed, the data suggest that vortex generator blades with 

heights larger than the boundary layer thickness create vortices which 

dissipate their energy so as to disturb the free stream as well as the 

boundary layer. Conversely, vortices formed by blades only within the 

boundary layer diffuse close to the plate surface, increasing the x-

component of the turbulence intensity in the boundary layer as they 

decay. The enhancement of heat transfer is then improved over a larger 

range of Reynolds numbers, 

A second group of measurements was made to determine the x-

direction turbulence intensity and mean velocity profiles in the y-

direction at several spanwise locations downstream of a vortex blade 
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Table 1. Span averaged parameters for hot-wire surveys 

for 2.0 In. and (dp/dx) « -0.02 Ib^/ft^ 

'« • *'(x) ®u(x) (^(x)&/^(%)o) 

0.25 6x10^ 2 54 0.042 1.23 

1.2x10* 2.02 0.031 1.37 

1.8x10* 2.11 0.026 1.77 

0.125 6x10* 2.73 0.037 1.05 

1.2x10* 2.41 0.034 1.15 
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pnir for the samo Reynolds numbers as in the first group of experiments. 

The configuration chosen was s = 0.75 in. ond e » 0.0625 in. 
8 g 

Results of the above group of measurements are given in Figures 60 

through 62 for the turbulence intensity and in Figures 63 through 65 for 

the mean vnloctty. 

Figure 60 shows the longitudinal component of the turbulence 

intensity data plotted against the vertical distance above the plate 

surface divided by the undisturbed laminar boundary layer thickness. 

Hie legend on the figure shows the survey location graphically with 

respect to the vortex blade pair and one additional blade. The data are 

dispersed for about 4 laminar boundary layer thicknesses out into the 

flow and all are above the line representing the x-component turbulence 

intensity for a two-dimensional turbulent boundary layer taken from 

Schlichting |20|. The free stream turbulence intensity for the tunnel 

conditions is about 0.5 percent. 

Figure 61 shows less dispersion of the data at a Reynolds number of 

1.2x10^, and the data are again all significantly higher than the line 

representing conditions for a laminar boundary layer. 

In Figure 62 for Re^^^= 1.8x10*, the data are all grouped in a 

region laying several percent above the line and extend to about 3 

laminar boundary layer thicknesses into the free-stream. 

From Figures 63 through 65, it is clear that the spanwise mean 

velocity profiles move closer together with increasing distance 

downstream of the vortex blades until no significant spanwise change is 

observed. 
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Figure 63 shows that the mean velocity at (z/s^) = +0.5 is less 

than at (z/s^) = -0.5 indicating lower and higher flow rate respectively 

displaced to those regions between the vortex blades. Figure 64 shows 

tnss dispersion of the data at Re^^^= 1.2x10*, and the two moan velocity 

profiles become closer, as well as the velocity profiles at the 

locations behind the vortex blades. Moreover, all the mean velocity 

profiles nhown in Figures 64 and 65 are in the transition region as 

determined from heat transfer data. In Figure 65, at Re^^y* 1.8x10* the 

data are grouped on one mean velocity profile. 

Tim conclusion obtained from Figures 60 through 65 is that the wake 

region produced by each pair of vortex blades with the smallest spacing 

» and the smallest height e mixed rapidly downstream of the blades and 

produced higher local turbulence intensity. 

The skin friction coefficient on the plate surface is expected 

increase where high velocities occur near the plate surface, as shown in 

Figures 60 through 65. 

The free-stream pressure gradients did not vary with the vortex 

blade configurations and were the same as those obtained with no vortex 

generator blades attached to the plate surface. 

F. Concluding Remarks 

The only data available for heat transfer downstream of vortex 

generator blades on a flat surface are those obtained by Edwards and 

Alker [ô| and Russell et al. |11). However, a quantitative comparison 
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of thoir work nnd the data obtained from this investigation can not be 

made. In the investigations of reference (6) and |lt), the vortex 

blades were attached to the heated surface so that the vortex generator 

blades acted as extended surfaces and increased the surfoce area. The 

work of Edwards and Alker (6| adopted counter-rotating vortex blades 

with height 1.0 In. spaced with pitch 3s^ and As^, and that 

their type of original boundary loyer Is unknown. Russell et al. (U) 

u»ed a uniform temperature rather than a uniform heat flux with two rows 

of rectangular co-rotating blades. 

The only qualitative comparison that could be made with data 

obtained by |6| and (11) is that with the behavior of the distribution 

of the local enhancement | h^^ j!)g^^(x)o'' Their result* indicated 

higher improvement of heat transfer coefficients in the regions located 

directly downstream of the vortex blades than in the regions between the 

blades. In Figures 50 through 58, similar behavior of the local 

enhancement was obtained and the regions between the blades indicated a 

small enhancement. From this point of view, similar results were 

obtained. 
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VI. CONCLUSIONS 

Tim previous mnolysi* of the results leads to several conclusions: 

1. The new data presented In this investigation support using a 

vortex generator technique to provide an enhancement of heat transfer. 

2. The amount of heat transfer enhancement depends on the vortex 

blade height and arrangement on the plate surface. The best Improvement 

obtained was with the smallest space between the blades, especially if 

the blade height is not larger than the boundary layer thickness 

estimated at the blade location. 

3. The overall heat transfer coefficients obtained at the three 

different pressure gradients have measureable increases with increasing 

the free-stream preasure gradient, contrary to that obtained with a 

smooth surface, indicating that the overall heat transfer coefficient is 

a function of pressure gradient in the presence of vortex generator 

blades, 

4. The local enhancement of heat transfer coefficient was 

increased for this system over that for a plain flat plate mainly 

because of high turbulence produced over the region adjacent to the 

plate surface, resulting in increased mixing of the slower fluid near 

the plate surface with the free stream, 

5. The most important factor in establishing an effective design 

of a vortex generator is the need to ensure that the effects of the 

vortices remain close to the plate surface and do not diffuse into the 

free-stream. Design guidelines were proposed on the basis of beat 
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Lransfor nnd Che development of the boundary layer resulcs. However, Co 

H«c an opcimum arrangemenc It would be necessary to do further heat 

transfer and boundary layer investigations over a wider range of vortex 

generotor arrangements and configurations. 

f t .  Skin-friction coefficients could not be determined from the 

distorted velocity profiles existing downstream from vortex generators; 

however, it is expected that they would increase where high velocities 

occur near the plate surface. 

7. No experimental data were taken with an initially turbulent 

boundary layer at the vortex generator location. No conclusion» can be 

made concerning whether or not the turbulent boundary layer heat 

transfer correlation represents an upper limit to the enhancement 

achievable with vortex generator*. 
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I 
KEEP 
0I 8P  "  U#  , fp« ,  

P AU OC  
0 1 9P  *  <dU/« tX)  

PAUSE 
B I BP "  «r tP /dX > 
PAUSE 

INPUT * U  Ua  

Air Aweraq# T#MP#P41*P* » f 
• • • » 

t Air d«n«tfy i Xbn/ffS 
f U«<»I»I39 Rw Oftw/ll«lP)*l/3 
( Ua(ii3»f 1*1/2 
f Uvlaelfy Oridlvnf t dU***)/d* 
* Vcltclly • X'O k Ut<»> 
r Pp#*#wp# Cr«dl«nt t dP/dX 
I dP/d*» -## #1P U* (dU/dXI/qc 

•,A(7» 

l/8*c , 

Ibf/Pi3 

,A(e) 

••,A(9» 

dU»/dX & dP/dX OK 11 , V##'1,N*"0",N 
IF W»0 THEN GOTO B#*_#p##d 

I 
DE EP  
INPUT " Ha*# 9994 Ih# V»ri»» C#mer#l#r# Î ,t#«»t,M»"0 *,M 
IF N*1 THEM C08U» Vsrt»» 
f 
OUTPUT W*»»"" 
OUTPUT K»y USING Fn««ltAil> 
OUTPUT Xeyr Oaf* > •,»tll> 
OUTPUT X#yr Op*rat*P > ",A#U* 
WRITE »IN K#y 1,10,10 
OUTPUT Kvvt" RwnninQ Csnditlan 
OUTPUT Key)" mmmmmmmmmmmmmmmmm* 

OUTPUT K«y USING Fnla2iA(2> 
OUTPUT K«y USING Fnfa3iA(3) 
OUTPUT K«y USING Fnta4iA(4> 
OUTPUT Key USIW F».»a5i,A(5> 
OUTPUT Key USING Fnta6iA(6> 
OUTPUT Key USING Fnfa7(A(7> 
OUTPUT Key (MING FntaStAiS) 
OUTPUT Key USIW Fw$*»&A(9* 
OUTPUT Key USING FMfalttA(lO) 

1660 Fntal< Run N« ",20 4»,// 
1670 FntaZ' IMAGE Atnespher Preesiire (Pa) i Inch Wg i m -.MB 3D 
1680 Fwia3 IMAGE Ambient Temperature (Ta> i F i m •,M3B 20 
1690 Fnta4( IMAGE Free-Stream Temperature (T»> > #F i •* ",M30 20 
1700 FwiaS IMAGE Air Density (Re.air) i Ibm/FtS • m -,M30 40 
1710 Fnta6> IMAGE 0 Unheated Length i inch i K •,M3D 30 
1730 FM$a7 IMAGE W Free-Stream Velucity 8X»8 (U#) i Ft/Sec i  m -,M39 20 
1730 FwiaS IMAGE Velacity Gradient ( dU/dX ) i l/8ec i  m ",M3D 40 
*740 Fw*a9 IMAGE Pressure Gradient ( dP/dX ) i Ibr/Ft3 i  m ",M3D 40 
1750 FntalO' IMAGE " Input Current (I») > amper > m » p M3D.4D,// 
1760 IF C(l)=20 THEN C08U» Urife.vqs 
1770 # 
1780 I 
1790 I H»i - Wires Specification'-
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iBtn 
IM.1I 
t030 
*840 
test 
tff«9 
tB70 
tilflO 
tB90 
$900 
ivto 
tva# 
t93S 
1940 
1990 
i9*0 
*970 
$9#0 
*990 
?000 
20*0 
?030 
3030 
?0<«0 
2a«io 
20*0 
?070 
30110 
2090 
3*00 
2 * * 0  
2*20 
3*30 
2*40 
2*50 
?tfcO 
rt 
?*70 
2*60 
?*90 
2200 
?2*0 
2220 
3230 
2240 
2250 
2260 
2270 
2260 
2290 
2300 
23*0 
2320 
2330 
2340 
2350 
2360 
2370 
2380 
2390 

OttTPUt Key»» 1h# SpcetftcAtisn *f M«f-U*f» Pr«b»«" 
output K#y * * 
yRlTC BIN Key»*0 
» 

XNPUt • înptft #f «h» h*f_M*r#?,< N#r« « * ,8l«nT *9 tli#fh«*t*,H»t 
IF tHfN C08UB N*rM**_pr*b# 
IF H»t*** tHCN 009U» 8%#n*_pr»b# 
IF Mel»* tHKN C08UB Napn«tjirob* 
IF Ht«"2 tHCN OOiUB Sl«n*„ppob* 

I 

HCASUNCO tHC NUN DAtA. 
t — 

Chann»|«*0 
33S? 

)***l"2 9«A(6) 

%(3)«*S ***A#&* 

FQN !>* to 3 
MBIIC »1N N#y**2 
irrr 
BI9F • Mnw# !• F««tt*vn 
FAU8C 

1»>A(7>*A(0>«»(I>/*7 

I H«t-Ulr« Channvl, 
t M#*-W*r# 9«n«lf*v*ty » friw C*l*bP«ftan 
I tili ' %• * Uflhaattd L#nq*h 

h *neh j, • •,X*I» 

I U»(»> » UvtOD * fdU»/dXl « »/*? 

fffP 
BIS# • tneirf* Fr##-B$r##m " OWE fp#m 
FMIflC 
FOB Number"* tO 7 I f»r Fr##-8*f##w 
KEF 
Z**Niiwb#r >»(4-NuMbNr )«* 
BIBF • H»f-Wir» *n«*(l* Fp#»-B$r#aM «* Z# »*»€•» • *,Z**NiiMb# 

FAU8C 
608»» Oe.vvU 
C08U» »«#_«•»*» 
U»(l«Ni»Mb«r)»E/H«t^lP«jl0n 
Ud* ( 1, Nuntowr *_M*r#j*em 
ta(l,NHnb«r>"C«/E«tOO 
#*%t NvMbvr 
t 
W#»0 
Uw*»0 
T»"0 
! 
FOB NwMber-* TO 7 
U**U**U*(I ,Hif0tb9r} 

I, Nwnber > 
r««T9*Ta<l>N»nber> 
HfXT Ntinbvr 
U#=W#/7 
Utf*>Uw9/7 
T»»Tf/7 
BI8F "By F»t»l 
PAUSE 
DI8P " CHfCK th« H»»-Uip» Calibr^tian* 

I A««rdq« «ntf T»X 
f f»r Ff#e-S*r#«M 
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3400 PAUSE 
Situ OUTPUT kt Qtt ?. If VrS th«n C0N1 ,If NO th«n CHICK * 
3430 output CQNNCCtlQNS 4nd 9tOP , 8f«pf from lh# bCQlnnlnq* 
R430 PAUSE 
2440 > 
74S0 » .Uy«r«S«)((l)/Sqil4U»f(X(l>/t3>/Kwl«> f E«t t.L. ih&ck 
3460 R»(l>>Ua«(X(l>/13)/NvU # U«<»>«»/N Ul« 
?470 » 
34ne OUTPUT Kttf USING 2490,%<%! 
3490 tHACE //),* Dtftine» rt«un«fp«jn th* leadimg #dq* * t Inch t * ",30 40 
:M00 output Wry USING SKIOkU* 
25%0 IMAGE * Pp««-9trt«n VelueMy f Lteiftsn X U*$*>» fp« » • ".3D 4D 
3!I30 OUtPUT Key USING 2W0»*#(%) 
3530 IMAGE » Il*yn»t4a NunbffP t NeW* * L«e«fl«n X " *»70,// 
m%40 OUTPUT W*y USING 2S#0»U** 
3S50 IMAGE * Pr#»-8fr»jn fl(»ei»»fton Vvlictt)» »*<»>) fpt i • ",20 40 
PtèO OUTPUT W#y USING 2S7@»?» 
3S70 IMAGE • Pp##-Sip#«m lupbulanc* tnf«n«ttytttf % •(it'/U>*l9lk • ",20 4D 
35110 E«"U««H«f j(tr»_««n 
3590 OUTPUT M»y USING 2*00»E# 
3&00 IMAGE * Oc «wipvt V»ltdQ* #f Ppe#-S$p#«* U»(X> » V«I1 t • *»?0 40.// 
3610 OUTPUT 1(9» USING 3AI!0|t_Uyffr 
2630 IMAGE * E»flM4fffd Ldntnar S L«tfvr ibtelin»c8 t * i tnrli * * *,20 40 
3630 OUTPUT K#y USING 2649i6<3}/?/»_l«y«r 
5640 IMAGE " M##*#F#w*m$ f T-f#* /2 » wh#r# (V/t lAyvr} • *,20 40,// 
3610 M«IO 
?<>60 GOSUP I tn* 
?A70 OUTPUT Kfyj," 7 f #MS w »' t»'/iH 

•w'/U»> <U»-»>* 
26H1» OUTPUT Ine» ##!$ P*/8«* 
2690 60SU1» l*m# 
3700 IWITr »IN KvyttO 
2710 f 
3720 WEP 
2730 01 HP • M»v» $# P»«lftan l i i i  ««3 7S ineH • 
2740 PAUSE 
R750 t»*,062S I T,, Koifht #f W G'» kl#d*# 
3760 BEEP 
2770 0I8P • M*v# I» V#-PI#n# P##$*$#m j, *• » Inch *,*• 
3780 PAUSE 
?790 t 
3000 FOU TO 61 
28*0 t25 
2B20 PEEP 
2B30 • 0I8P " M**» «» P»«tfl»n t  » Inch » • 
3840 PAUSE 
2mS0 I 
286» C08U8 Oe_w»lt 
3870 C08U» 8(1»,Valt 
2B80 ' 
2890 
2900 U(»H, 
3910 Ttl,J»»E»/F»tOO 
?920 # 
2930 OUTPUT K„ USING 2940jZt J) .E,E»,UtI, J» ,U»(l,J> ,TiI, J) ,Ee/E«nOO,U»-UH. J> 
2940 IMAGE 2X,MD 30,S%,20 30,3%,»K0 30,7%,20 30,4%,20 30,7%,20 30,4%,20 30,7%,20 

30 
2950 » 
Z9àO NEXT J 
2970 WRITE BIN K*,*10 
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:*90O C09U» Linr 
2990 OUTPUT KP»»* f#r Frse-S»r»a» * 
3000 WWITC N#y»*0 
mmo OUTPUT KP»»* 2* U» tt'o TtttX Ua<»,i) 
/u#$*r 
30?» OUTPUT Key»* Inch r»/S»e * 
3030 n>7 
3040 COSU» L*n# 
30f0 FOP K«t TO 7 
3060 OUTPUT KPy U9IN6 3070t2«(K>,U»U.K>,Utt»(I.K>,T«(1,K>.Uat1,K)/U« 
3070 IMAOC ,2*,MD 3D.S*,2B 30,3X,3D 3D,7%,20 4D,7)(,D 4D 
3000 NKXT K 
3090 C09U» I. In* 
3190 NfXT I 
3**0 * 
3430 UilTK »IM Kt^ilO.lO.tO 

3140 I RCCOROINC OP HUM BAT* ON BI9K 

3*W I 
317» ' 
3100 * *********#***# 
3*90 IPfP 
3300 INPUT * Af# y«w i|ain« I» P«c*r4 tit* daf* I , N*"0 ".N 
32*0 IP W»0 THEN 60t0 3481 
3M0 BI8P * BAT* R,#d* t« k* P»r»r4*tf •» tftsk , If O K CONT * 
3230 PAUSE 
3240 B18P * In^vrt 0*#k tnl» thr dimh tfrttf* «ntf COMT * 
3290 PMJSf 
321,0 IP 6(3)^ om THfM Nam**,* 
3270 IP 6»3»» 135 TWeW #Wm#$»2 
3280 IP COX" 2* THCN W#w**»3 
3290 W#M#2,|MT«G$2** 
3300 IF C(3)« 79 TMN W#w*2-0 
33*0 IP *»8(*(9Hi.0t9 T»«M W*M#3^* 
3320 IF (*»e(A(9l>>.0t9> AMD (Atft(A(9>H 02S> TMH M«mp3«2 
3330 IP A#e***9n» 03# ;WM W#w#3»3 
3340 I 
3350 F*le9#»W"&VAL#(NfM***%'8"»VAt$*W4w#?%»"P"&VA*#$Nam*3* 
3360 OUTPUT ttn* Pll* W#*# *$ ',F*I*# 
3379 01SP "If O K COMT j,»tl»«rw>«* INPUT Pll»9 ê* T»8»Pt. EXPC. » CONT 

33B0 PAWfif 
3390 * 
3400 MASS STORACC IS * P 0,0* 
34*0 W#**_***r«o* » 
3429 I »»»»»•••»» 
3430 CREATE P*|*«,2$ 
3440 OUTPUT *fcj- Pile Cr««t*tf f»r Rscfrdin^ th* I» ",F*I*$ 
3450 OISP • I» fh* P$l# O K , P CONT • 
3460 PAUSr 
3470 I 
3480 ASSIGN #* TO ftlef 
3490 PRINT ft»A(«>,C(«>,X(«>,R9(«> 
3500 PRINT l)>Zi>(«»,U»i«>,U»*(«>,T»<«} 
35t0 PRINT ttiZ(«),U(«».Uw(«),T(«> 
3520 I 
3530 CHECK RFAO #* 
3540 PROTECT Fil^t.'DAfA" 
3550 ( 
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3560 output Key USING Fnt.f!•« 
3570 Ffiv filv»inACC I, * 0*1* recerded #m dlaH » ftle nam* it ",6A 
3580 INPUT * Uewld »•» Itk* te nttrm tt en ^nether dltk ? Y##**,Ne»e*,N 
3590 ir N>0 THEN GOTO Ch«nQ».dtn 
3A0» MASS StOtAGE 18 *>P 0,1* 
3610 COTO n4<tt_»ferag» 
3(>20 t 
3hl9 WRITE »IN Key I ta 
3f,40 I — . . ... — 
3&50 f 
3661* Ch«ni)«_dtn> t 
3670 • 
3600 INPUT * U any ef I <Ue) er (dP/dX> I chanqqed ? ,Te#'t, Ne-0*,H 
3690 IP N«t THEN GOTO TvPbvlence 
%700 DlflP * Twrn ih# D C pewer euppty OfP MM» • 
37tO PAU8K 
.1730 D18P * Th# CLOSED peettten 6 fern OPP th# AC Pewer ef Utnd tennvl* 
3730 PAttSE 
*740 » 
3750 t 
3760 STOP t «###«##*#########*##$#$$#$# 
3770 END t ##*$#**##$###### End ef ih* W#tn Program ##*#*#*##*###*## 
3780 I 
3790 I 
3000 I — — 
38*0 # Th# n»»t %e6preqr#w ta fer M#4*wrtng th# Cwrrwnf . 

3630 Awper I 
3040 # mmmmw 
3850 ( 
3860 OUTPUT 722» "PtiSTStWAIMt" 
3870 OUTPUT 709 USING 3880,9 
3880 IMAGE O.'C'.ZZ.'E' 
3890 Bum*0 
3900 I 
39t# roi W#t TO to 
3920 TRIGGER 722 
3930 ENTER 722 HNT»E 
3940 
3950 Mr*T N 
3960 t 
3970 E«6wn/tO 
3989 A(tO)'5/ OS#E t Current le ,amp ,1 Uetng Shent Rtsts I 
3990 I 
4000 RETURN 
4010 f 
4020 I — 
4030 I Th* n»»t Swbpreqraw in fer mewwrtng th# T#mp#r«twr* , 
4040 t —— — — —-
4050 Therwe ! 
4060 I 
4070 f 
4080 OUTPUT 722i-FlR3T?MAlHt-
4090 ( 
4$ 00 FOR Ch^A TO » 
4ttO OUTPUT 709 USING 4t20^nh 
4t70 IMAGE t.-C-.ZZ.-E" 
4t30 Siin«0 
4t40 FOR N»t TO tO 
4150 TRIGGER 722 
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4)60 CWTER 722 DINftC 
417# S»n'*9tfn«| 
4tB0 Nm N 
419» C«S»n/t« 
4298 e(Ch>»Aa«E«»ti 
42*0 NEXT Ch 
4229 t 
4239 nCTUKN 
4249 » 
4399 t 
4269 * The ne»f qwbpr«gram t# f«i* H»f-Utre« Speeetfle«tton. 
4279 ! — ___ ________ 
4289 N«pmal_pr«(ie # 
4299 # mm*mmmmmmm 
4399 » 
4319 OUTPUT Key*» for ftandard Hei-Wlre Pr»he* 
4329 OUTPUT Me^t* Ttl Hetfel 1337 (-t9> •-* 
4339 iet«S 
4349 iht'S 
4359 Qhrt»>«»t|/llct 
43*9 OUTPUT Ney UflMC r.etRct 
4*79 fjc* IMACf Geld Re«l«f«nee af Prsde. » ahw# » • ",2D 3D 
4389 OUTPUT Key U81N6 PJi)R>it 
4'.499 Pj*t IHACE " Opprefed Netimanee af Prabe » ahw# t • *«20.30 
4499 mjTPUT Key U8IWÎ P_r»Ohrt 
4419 P_p ' I MARE • Owpr He«i iefia af Prabe » ah»»» » • ",2D 3D 
4429 IP E'»T4md_by»9 THEN 44S9 
4439 OUTPtn Key USIN« P_#»E#Nm#_by 
4449 » 
44S9 KETUKM 

t 
4479 I 
448» 8l4»»t_pral»e> # 
4499 # mmmmmmmmm 
4999 I 
4S$9 OUTPUT Key»* far the Slant Single Hat-Mire Prabe* 
4529 OUTPUT Keyr TSI Made! 1313 «-19» —• 
4939 U8ITC PIN Keyi19 
4549 #(2*7 
4959 Kh2*t9.89 
456* Ohr2»Kh2/#c2 
4579 OUTPUT Key USING f_e*Ke2 
4589 OUTPUT Key USING f Jij,llh2 
4599 OUTPUT Key USIW! F_r»0hr2 
469» If eft4ntfJ>y2«a THEN GOTO 4*3» 
46*9 OUTPUT Key USIW PjnE#tani*_by2 
4629 I 
4639 RETURN 
464» # 

4669 I The ne»t swbpragraw t» far Measuring the a/# D C wait af the Hat Wire 

4689 Dc_walt » 
4699 # SSA»»»«« 
4799 t 
47*9 TRIGGER 722 
4729 OUTPUT 722»-FlR7T2H3A*Hf 
4739 OUTPUT 799 USING 4749»Channel 
4749 IMAGE $,'C',ZZ,'E" 
4799 Sun*9 
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4769 rOR N*1 Î0 20 
477» tmCCER 7?3 
4780 ENTKR 732 llNTtE 
4790 gwM"SWM*E 
4800 NEXT N 
4ntO E«Sun/30 
4D30 f 
4030 RETURN 
4840 # 
4M0 » 
4B65 } IHw n»»f lUOpr*?#"#*» t» f»r H»«4Uflnq th» RM# D C. volt Bf 1h# Hut Wir# 
4m70 f 
4880 Rn«_»»lf' I 
41190 I •••»••• 
4900 » 
4»t* IRIQCrR 733 
1930 OUTPUT 73aj"r3R74>»M3f3Ml " 
4930 OUTPUT 709 U8IMC 4940)Ch«mm*% 
4940 IMAGE •.•C-.ZZ.'E" 
49S0 #ww#0 
49«*0 FOR M«t TO 30 
4970 TRIGGER 732 
4980 ENTER 73? 8XNT|,E* 
4990 9*#*"9ilw*E# 
nooo NfXT N 
5010 E#*#wM/30 
5tl?0 I 
SOlO RETURN 
5III40 I 
S040 i — — 
5060 * Th# m#»« »ubpr»9r«M t» f*r ih» Prap*rti»« #f Air. 

5080 A*r_pr#p > 
SB90 f mmitmmmwm 
5iOO » 
SMO Cp» 3?3I^3 424tO*i-5>«T*«r-? 93»tO*«-9)«Têwr*2 » iTU/(ll>n hr. «P) 
SiZO *4* 0020493*3 43**0'*-5)#T*vr t »TO/<br P» »P> 
r»l30 Vis» 0*ie30S*& 09*i0'(-S)*Ta*r I Ib«/(hr PO 
5140 K«i9«( 00303*T«vr-.47863)/3600 « ft2/8«c 
5*50 Pr4» 7858&- 800i4*T#wr » Prandtl N«nb«r. 
5t60 I 
5t7» RETURN 
5*80 f 
S190 I —— 
5200 ( Th# »»»»t @wbpr#gr4m IS ih» »»ri»» g«n«r«t»r«' CBfiguratton 

5220 V«»ri»» t 
5S30 I »»•»»» 
5240 ( 
5350 C(i)=20 # AaqIs 9f ineitfvne» -, d#gr#* 
5260 INPUT • lr»n%v9rt» Pitch #f V G'» biadw » inch.*,6(2> 
5270 INPUT • Height #f * protrustan -, <V.C'»> -, inch *.CO) 
5280 C<4)»t I Length *f « pr#tr##i«n » inch. 
S290 Ct5)» 0625 » Protrusian'* thickn##* » inch. 
5300 INPUT • Thw number #f Vertes Gener^ter» Made* 0 ",G(6) 
53*0 f 
5320 X^g^i 7S » Lecatien ef Vortex Generators j inch 
5330 Uwg'A<7>*A(8>«Xvq/i2 I Air Velocity at V Generators -, ft/Sec 
5340 Kwi*»i 00202»Tawr-.47862>/3600 
5350 Rewg-Uw9«iX«g/t2>/K«is I Reynold* Number at Vortes Generators 
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to 
20 
30 
40 
SO 
60 
70 
mo 
fo 
too 
tto 
t20 
t30 
t40 
ISO 
tto 
170 
too 
tvo 
200 
2t0 
220 
230 
240 
250 
260 
370 
290 
2*0 
300 
3tO 
320 
330 
340 
350 
360 
370 
380 
3*0 
400 
4t0 
420 
430 
440 
450 
460 
470 
480 
490 
500 
5tO 
520 
530 
540 
550 
560 
570 
580 
590 
600 
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X. APPENDIX B 

A. Computer Program For Reducing Heat Transfer Data 

# «em « me m m e , »» mm mm 
I Pr#qp4M N«M# " MfftT • 

I f9r neafttirinq »-

I t- Vetoeiftv», prteaur* and vctsetiy qradtanf*, 
t 2- Ltcal and haated currant 
I 3- Lacal hoat transfer rata* 
; ( csnduetttn, radtattan and eonvactton) 
I 4' Local and Span-avoragad Stanttn number*. 
I S- Campre meaeured Stanton number by the 
f predicted for laminar and turbulent 
I boundary layer flow 
I «*##m#**»*##*###***»m#-m*#*#*m**«*m*mm*mmmmemmm**mmm«mmmmmm*m**e 
I 
Hey»70t I Ihe I OUTPUT } 4 ( UNIÎE OIN 1 code* for the printer. 
PRIMICO IS 7,t 
OPTION iAOC I 
DIM Tatal(t2,t4) 
DIM A«(t>,Mit}.A(t2>.CIt2) 
DIM X(12>.f«tt2),Tb(t2>,U«t2>,ie(l2>.0ta<t2).aea(t2»,ara(t2),Qna(t7> 
DIM T«a(l2),81att2>,8ta(t2>,Sta(l2),llatf(t3> 
DIM T«12,ltt,>(12.tt>,gi<l2,tt).Qc(t2,tl),Qr(l2,|t>,Qn(t2.lt>,T*a(t2.tt> 
DIM St*t2,tlf),»a(t2,tt;,Z*t2,tt) 
DIM E(40)l.Pt4).Cp(4> 
uone DIN Wey*32,32,32,32,32,32,32,32,32,33 
UNITE DIM Key»27,77 

DI8P * Set the printer at top of page" 
PAUSE 
UNITE DIM Keyi27,84 
UNITE DIN Keyi27,70.1NT(t056/64>.lMT(t056> 
UNITE DIN Keyi27.76,INTU056/64>,INT(l056> 
INPUT "May yaw check thermocouple* & the #y$tem 7,Ve*"l,Na«0*,N 
ir N^'O THEN GOTO 560 
rON J«t TO 4 
DEEP 
DISy * Switch the Thermocouples Croup In order » J » •,3 
PAUSE 
A»10 
If J»t TWN D»39 
IF J»2 TWM #*39 
IF JO THEN D#37 
IF jr«4 TWN B«37 
Aa»43536 3205 
Db«IS0.5536> 
60SU» Therm*' 
FOR I"* TO D 
OUTPUT Key USING 500(3,I,C(I) 
IMA6E 5X^20,3X,20.5X,H60.2D 
NEXT I 
UNITE DIN Key>IO,te 
DISP * Check the none working thermocouple* IM ' 
PAUSE 
NEXT J 
DEEP 
INPUT "Input Nun No #*(** **) 7*,A(t>,"0perator?*,A«Ct>,*Date ?",D*(t) 
A(6*m4 375 I A(6) « plate unhealed length; inch. 
INPUT • Atm Pressure >in.H4i î",AC2> I Atmospheric pre**urei in Hg 
I 
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U8 

611) 
620 
630 
640 
6S0 
660 
670 
600 
690 
700 
7tO 
720 
730 
740 
7«0 
760 
770 
700 
790 
eoo 
BtO 
820 
830 
840 
RSO 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 
taoo 
toto 
*020 
$030 
$040 
$050 
$060 
$070 
$080 
$090 
$ $ 0 0  
$ $ $ 0  
$$20 
$$30 
$*40 
$$50 
$$60 
$$70 
$$80 
$$90 
$200 

#r t "",m(3) 

6>$ 
f)»2 
A4-43S36 3205 
lib>tSO <>536 
COSUB Ihtrno 
A(3)«(e($)«E(2))/2 
DEEP 
OISP "Anb 
CAUSE 
> 
E'EEP 
INPUT " ( Pa - P ttatic I i »'•$ 25 
INPUT -IP*- P tiaqi» ) t ,'"$ 25 ??",P* 
INPUT • I Pa - P «latie I f #'"23 4 ??",P«2 
X$"t a5*A(6> 
K2"23 4*A«6> 
Dh$"P#*-P# 
0h2*Pfl2-Pa 
AI5)"<70,73$«A(2)-S 2024«P«$)/<53 35«(A(3)«4S9.67)) 
Uat"8Q*(2«32 *74962 43«0lt$/<*2«A(5))) 
U#2«8Q#(2#32 *74«62 43«0ti2/(*2«A(5))) 
A(8)«IUa2-Ua*)/M}l3-X*}/*2) 
A(7)"Ua2-A(8)«X2/l2 
A(9)"-(A(5>«A(7)lA(8>/32,*739) 

t Anbtanf lanparatur* » sP 

I A$r tf«n«$iy 
; Ua*#*)»l2q Km Ohw/ta*Pl**/2 
t Ua<x2)>l " 
t V»laeiip Cr«d*#m$ 
I Vvlacity f X"0 
# Prvtcar* Cratflvnt 
I -da.air U# 

rt/2 
I dUa«#)/d% 
» Ua(a> 
i tfP/dX 
(4U/dX)/«c 

»ECP 
ftlfiP " Ua ,#ps, -%A(7) 
PAUSE 
0I8P * WU/dX) , */8«C , "",A«8) 
PAUSE 
0I8P • (dP/tfX) , lbf/P$3 , ••,At9) 
PAUSE 
INPUT »!« Ua . dUa/dX « dP/dX OK 7? . Vt«"*,Na«0*,H 
IP N-0 THEN GOTO 6*0 
SEEP 
OISP " Swiicf» fh» p#w#r an IM * 
PAUSE 
608US AMpar 
»ifP 
OISP » la i 4Mp«r i #",A(*0) 
PAUSE 
INPUT • U *h# currant la i OK TÎ , T#*»*,Na"0',M 
IP N"0 THEN GOTO 960 
INPUT • Ar# Varte» Can«r«tars «««d 71 Ma"0*,M 
IF N** THEN C0SU8 Vart»« 
IMAGE f.-C.ZZ.'E-
IHACE 'F*N3T2M3A$H$" 
OEEP I Th# nvst part far prvasure «wasurpmnt an ih» plat* #wrfac* 

I Cltcek 16» *np»f e»rr»nf. 

I 
OIBP " Pr#$*wr# Gradin* an th» PI**# 
PAUSE 
DISP " Set Scaniwalw* at CHANNEL 6 
PAUSE 
OUTPUT 709 USING $060>0 
OUTPUT 722 USING $070 
K = 0 
rOR N»$ TO 20 
TRIGGER 722 
ENTER 722 BINT*E 
K»K+E 
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I4V 

OtO NCXt N 
1239 e«K/ao 
t?30 C*-* 139#E t C4ltbréti«n const, for iho pre* irAntdueer 
1349 necp 
t?99 0!9P * Sol Scantwjtwe 4t Channel 5 * 
1360 PAUSE 
*279 OUTPUT 722 USINC 1070 
1300 K>0 
1299 POK Nfl to 20 
1309 TRICCCR 722 
1310 ENTER 722 tlNTiE 
1320 K"K E 
1330 NEXT N 
1340 E«K/20 
1:199 P#oi*"C*l 1394E • ff«<)nêtton prevture on the plate nose * in M20 
1369 POR :*1 TO 4 
1379 lEEP 
1300 PI8P * Set 8canti#«lve at Channel *,1 
1390 PAUSE 
1400 OUfPUY 722 USINC 1070 
1410 K»0 
1420 P0» N«l TO 20 
1430 TNICCCII 722 
1440 ENfER 722 MNT»E 
1490 K«K*E 
1460 NEXT W 
1470 E«K/20 
14S0 P(I>*C*1 139«E * Static Preetifres on Plate Sur fa## « In.HSO 
1490 Cp(n»t-<PU>-Ps09>/(P(t>-p909> I Cp(»>>IPs(»)-P«(*tl/( Me.alr Ue*2l 
1900 NEXT I 
1519 I 
1520 A'3 
1530 fi"5 
1540 Aa»4353t 3205 
1559 W»150 Wà 
1560 COSU» Thermo 
1S70 A<4>»<E<3>»Ei4»»f»5>>/3 > Prer-Streai» Tewperatore 
1580 # 
1590 INJTPUT Key U9IW fntal^Ad» 
1600 OUTPUT Key*" Date ' 
1610 OUTPUT Key»' Operator • •,*•<»> 
1620 WRITE »IN Key»19.19 
1630 OUTPUT Key»" Running Condition 
1640 OUTPUT Key*" »##,##»*#*«#*»*#»* 
1650 OUTPUT Key USINC Pwta2»A(2) 
1660 OUTPUT Key USINC PMta3)A(3* 
1670 OUTPUT Key USINC FMta4»AM* 
1680 OUTPUT Key USINC F*>ta5iA(5> 
1690 OUTPUT Key USINC Fnta6i,A{6> 
1700 OUTPUT Key USINC Fn«a7iA{7) 
1710 OUTPUT Key USINC FntaSiAtS) 
1720 OUTPUT Key USINC Fnfa9>A(9> 
1739 OUTPUT Key USINC Fntat0>A(10> 
1740 IF C(4)'l THEM C08U» Write.vg# 
1759 Fnta l '  IMACE / / ,  Run No ',Z0 10,// 
1760 FwtaZ IMAGE AtMOsp h er  Pr##*wr#  (Pa) > inch Hg i m ",M3D 30 
1779 F**ta3 IMAGE Ambient Temperature tTa> i F > » ",M3D 20 
1780 Fmta4 IMAGE » Free-Stream Temperature (To* i OF i » ",M3D 20 
1799 Fmta5 IMAGE " Air Density (Ro air) i Ibm/Ft3 i ',M3». 40 
1800 FMta6 IMAGE • Unheated Length i inch i ",M3D 30 
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?4il» 
2428 
3439 
S149 
24S» 
3469 
2479 
?4B9 
2490 
?S90 
25*9 
PS29 
2S39 
2949 
2'»«S9 
2569 
2579 
2509 
2599 
?699 
2619 
2629 
2639 
2649 
R659 
2669 
?679 
261)9 
2699 
2709 
27*9 
2729 
2739 
2749 
2759 
2769 
2779 
2709 
2799 
9099 
26*9 
2W29 
2839 
2849 
2059 
2869 
2879 
2889 
2899 
2999 
29*9 
2929 
?939 
2949 
2959 
2960 
2979 
2989 

151 

PAUSE 
» 
•CEP 
OtSP " Switch an pstttlen <A « *>* 

A"*9 
H'39 
*4*43497 9727 
|ib>*S9.S7*44 
COSUD ThSPMO 

• Ftr«T Croup of ihermocowp*#* 

» 
smip 9 * 

«««o 
5»At6l 

rOM 1>*9 fO 29 
TIJ,I-9»»CtI» 

HCUr t 
TfttJMK?/** 
»«2* 
C05Uft #4eh_t#Mp* ( 
lb(J>"(et3t>*e(23)*C(33>*C(24>)/4 I 
fO» I»* 10 ** 
COSU» Jmmçi 
I 
J*4 ( ffilP f 7 

I — 

» 5uPf4C» 1«MP«. 

f A* 

i4eb Tempe 
A«. " 

1***9 
XU>'6 875*A$6* 
FO# :*25 TO 35 
TiJ,I-24>"E<l> 

NEXT I 
T«(J>"K9/** 
»»36 
60SU8 @#ck_1#mp* 
Tb<J>»tEi36MC<37H>Et38>*E»39ïï/4 
r08 l«t TO ** 
C08Uf> Tewp 
# 
f 

•fCP 
P*SP • Swtict» em position tA -

A-19 
8'39 
Aa«4375*437* 
6b**59.67595 
G08U8 Thermo 
I 
» 
Et3t>-(Ei39>«E(3?)»/2 

» Svrf4e» Temp* 

» A» . • 

( #4(h Tempe 
» A».* " 

2)* # Second Croup of fbernocovples 

I Thernocoupl» *31 <A-2) i» not good 

; 
J '9 

Xs»0 
X(J)=22 8*25*A(6) 

I STUP * 22 
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30t0 
3020 
303* 
3040 
3090 
3060 
3070 
3080 
30f0 
3t0» 
34t0 
3i:»0 
3t30 
3140 
3IS0 
3160 
3170 
3teo 
3*90 
3200 
32*0 
3?20 
3330 
3240 
3250 
3260 
3270 
3390 
3290 
3300 
3310 
3320 
3330 
3340 
3350 
3360 
3370 
3380 
3390 
3400 
34)0 
3420 
3430 
3440 
3450 
3460 
3470 
3480 
3490 
3500 
3510 
3520 
3530 
3540 
3550 
3560 
3570 
3580 

152 

roR toio to so 
T<J,I-9>fC«l> 

MfXT I 

»"2* 
COSU» t4ek_f«npt 
Tb(J)«(C(2t>4>C(23HC(33>»K(34n/4 
fon i»t 10 it 
cornue t«mp 
» 

» A*. » 

f i4Ck Temp 
r " " 

J«IS » t?RI» $ 33 

Kt<0 
X(J><i34 «*A<6I 
rOK 1»3« 10 39 
T»J,l-34»«f«|l 

NCXI I 
1s(J)-K9/tt 
»*36 
608UI Neh.iemp* 
tto(Jf)«(E136>»e(37)«e(38>*C«39>)/4 
rOR I"* 10 tt 
COBUK If ftp 
» 

t 
WIP 
BXRP * Switch an p»«lftan • t>" 

*•10 
»»37 
*4*43369 49**5 
Bb»*50 3539* 
C06U8 IhCPn* 
» 

t 
J»2 
K»*0 
XiJ»»2 625«Ai6> 
ro« I»*0 TO *4 
TiJ,I-9>''CtI> 

MCXT I 
T»(3>«K9/5 
»(J,2>«Ei*6> 
R(J,4>«ei*5> 
COSVi »4Cfe_f0*w2 
1(>(J>-(E{*5>«e(t6)>/2 
FOR l«* 10 S 
C08U» T«np 
f 
i"! 
K*=0 
XU»4 75«A(6> 
FOR I«t7 10 2* 
1(J,I-t6>«E<l> 
K»-Ks«e(l) 
NEX1 1 
1sW)=Ks/5 

# fur 

» A» • 

( t«ck 1#M## 
; A* » • 

# Ihlfd Craup #f 

( 81RIP # 3 
I — 

f Swrfdc* 1#Mp* 

f A». • 
# »#ek Tvnp*-

I A». 

» SIRlf t 5 

» Sttrf4C» T#mp$ 

I Aw. 
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36*9 
3620 
3639 

3«S0 
3A&9 
3679 
3689 
3699 
3799 
37U 
3729 
3739 
3749 
37S9 
3769 
3779 
3789 
3799 
3899 
3919 
3839 
3M39 
3849 
3859 
3869 
3879 
3889 
3IW9 
3909 
39*9 
3929 
3939 
3949 
3959 
3969 
3979 
3989 
3999 
4999 
4919 
4929 
4939 
4049 
4950 
4069 
4979 
4089 
4090 
4109 
4110 
4130 
4139 
4149 
4159 
4169 
4179 
4189 
4199 
4200 

153 

8t*ir • to 

* 9TilP 9 13 

iU.3MC«S3> 
i<J,4)«C<23I 
COSUR NtW_t«M03 
1bU)'(CtaS>«C(33>>/3 
POi l«t 10 5 
GOau» Ttno 
r 
J»5 I 
K«>0 I 
XUI>19 062S»A46> 
rOO t"34 10 38 
T«J,I-33>«e<l) 

NEXT I 
T«<.n'Ko/9 
»<J.3><C(39) 
•«J,4>»e»39) 
609U* f*4eli_l»np3 
Tti(J)*(C(29Me(39n/3 
roi 1*1 10 5 
C08U» T»mp 
I 
J«'6 
K«<»9 I ———, 
XUX13 25»A(6> 
rOi I "#31 TO 35 
T«J.I-39>»fn> 

NCKT t 

iO,3>«C(37> 
»(J.4>»f(36> 
COSUD 8ach_iemp2 
1t»(J>«'(f(3S>«CI37)>/2 
r08 !•* TO 5 
C08U8 T#mp 

# 
( 

BEEP 
0I3P * Switch »» p*«itlan <8 - 2) 

A*10 
B'37 
***43617 29115 
#b»150 6131 
608U8 Th#fm# 
I 
I 
E(26>-{r(2S>«E(27>)/2 
t 
I 
J=7 
Ks»9 
%(J»=16 4375+A(6) 
FOB 1-19 TO 14 
T<J,l-9)«E<l) 
K».K#*EU) 
NEXT 1 
Tfi(J>'Xs/5 
8(J,2)-E(16> 

l>«cli Tcnpn. 

A* » • 

t Supfac# Temp#. 

Aw, • • 
Back T#Mp5 

f Av. 

I Surfacp Tpwp* 

A». " " 
Nek Temp* 

I A* 

f F#wrth Craup *f iHerntcavpls* 

! Thcpnacapul* 926 1» nat gaad 

I ST81P • 16 

I Sitrfêç» Tpwp* 

( A# » 
I Back Tamp* 
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4210 
4220 
4230 
4240 
4990 
4260 
4970 
4290 
4290 
4300 
4510 
4320 
4330 
4^40 
4390 
4.160 
4370 
4360 
4390 
4400 
4410 
4420 
4430 
4440 
4490 
44&0 
4470 
4400 
4490 
4900 
4410 
4920 
4430 
4940 
4990 
4960 
4S70 
4980 
4590 
4600 
4M0 
4620 
4A30 
4640 
4690 
4660 
4670 
4680 
4690 
4700 
47*0 
47?0 
4730 
4740 
4750 

156 

»(j,4)«r(i9> 
COSU» »4Ck_ti»Hp2 
tbU>«(Rll9)«C(16))/2 
rOR 1*1 TO 9 
OOtU» Temp 
r 
S'B 
Km-'O 
*(J)»*9 629*A(6) 
FOR I-17 TO 21 
T(J.1-16>>C(1) 
K«>Ki*C(l> 
NEXT I 
T*W)'K$/9 
l<J.3l>e(23) 
»U.4>«r(22> 
C08U# »4Cli.t«i«p2 
TbtJ>>(r(22>«C(23))/2 
FOR 1*1 TO 9 
C09U» T#mp 
I 
J*10 
Ks>0 
)«J»26*At6> 
rot l-'24 TO 28 
T(J.I-23»«EU» 
KcMtKEU) 
wrxT I 
T«iJ>*M»/9 
tU,2)»e(30> 
»U,4)'E*29) 
COSU» »aek_i#wp2 
TbU)"$f(29)*E(30M/2 
FOR l»t TO 9 
C08U» Temp 
i 
I'll 
K*'*0 
X<J>»30 2S»Oi6) 
FOR J»31 TO 35 
TtJ,I'30>-Bi»> 
K»«K*«E(I) 
«XT I 
Ts<J»Ke/5 
B(J,2>>E(37> 
»(J,4>«C(36> 
C08U» 84Ck_t*np2 
Tt>U)«(E(36)«E(37n/2 
FOR l«l TO 5 
C08U» Temp 
i 
I 

1 9TR1F 0 
t 

19 

> SurfACt Temp#, 

» R», -
t »«ek T#Mp# 

I Aw. 

> STRIP # 29 
# ———— 

I 8»rf«c* Temp* 

; »«ek T#Mp# 

# A*. 

t 8TRIF # 29 

# S« #MP#, 

» Aw, " 
t R4cb Tpwp 

i A*. 

WRITE BIN KeytlZ 
WRITE BIN K»y>12 
I 
91SP " Check Thernacaiiplvfi' Reading 7 " 
PAUSE 
IMPOT • I» fhe STEADY 8TATF abi4in«d 1 Ypv-t.Na-O'.Ans 
IF Ans'O THEN H«asurig_t«np» 
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155 

48tO » 
4830 t 
403» C08U» M#** 
4840 I 
4flfO ( L#e*X «p#n-#*#raq#d Stanton # 
486» » batvtf on heat rat## m#a4wr#M#nt# 

4868 • 
4890 ron J»t TO 13 
490» Q>a>0 
49t0 Qe4"» 
492» Ora»» 
4930 Qna*0 
4940 9t#"0 
495» i*v*0 
49éO H>« 
4970 ir «J*l» 0» <J»4> 0* <J»9> 08 CJ«t3> IMIM M»tt 
4980 rOi l"t TO H 
4990 QU>aia«QMJ,l> 
SOOO Qca>Qc4*Qe(J(l> 
50*0 Qr#*Qfa*Qf(J,%% 
5020 Qm#"Qma*8mW,n 
«030 
5040 8a»>84w*R«(J«l> 
S050 NCXr I 
5060 Qi«(jr)*Ql4/N 
S070 ac«(J»aca/»t 
SOOO Qr«(J>«Or«/H 
9090 Qn*W)*Qna/W 
5100 ST«(J>o9i4/n 
5**0 R«v(J>''8aw/n 
5*20 NEXT J 
5*30 I 
5*40 # 
5*50 OUTPUT %9f USINC Fwt#*&A(*) 
5*60 OUTPUT *9Vi* Oëtm • *,89**) 
5*70 OUTPUT Ht/Vi* Og»ratar  ̂ ",<»•<*» 
5*80 U81TE »IN *„»*»,*9 
9*90 C08U8 tin» 
5200 Pmtw* IHACt $ X U(»> 8»<»> Z T» T(* IT«-T«» " 
52*0 FwtwZ IHACC t"<T*-Tb> Q*n Qc Qr Q.n«t 8tn(s,>> " 
5220 Pwtwa IMACE "Stn/St»* 
5230 OUTPUT *99 USING Pntw* 
5240 OUTPUT K»|r tWINC F»tw2 
5250 OUTPUT Kvy USING fnfwS 
5260 OUTPUT in. fp# in d#qr#* P 
5270 COSU» tin* 
5380 ( 
5290 fOa J't TO *2 
5300 I 
53*0 WRITE MN K*yi*0 
5320 OUTPUT K,y USING FnTh*iX(J>,U(J),R»U> 
S330 Fwth* IMAGE #,28 40,2X,2P.2B,2X,70,2X 
5340 I 
5350 H=5 
5360 IF t j ' t> 08 <J"»4> OR <J»9) OR ij»t2> THEN M»** 
5370 f 
5380 FOR I=* TO M 
5390 IF H=tt THEN 2(J,I)*6-I 
S400 IF H=»5 T»«N ZU,I*"2*(3-I) 
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SU» OUTPUT Key USING rnthatZU.I),T( J, 1 > .Ht J,1 > ,T««( J,l> ,T( J, 1 ><1( J.I) 
S130 FMhS IHACE #,M2D,2X,3D 2D,2%,3D 2D,2X,3D aD,2X,3D 30,2% 
r.43B OUTPUT Kty USING rnth3»Qta.l).QcU,I>,Qf'(J,t),QnU.l>,St(J|l>,R«(J.l> 
S44D Pnth3> IMAGE 2D 3D,2%*2D 3D,2%,2D 3D,2X,26 3D,2%,D.è6,2X,aD 3D 
S4SB IP THEN GOTO SStO 
546» OUTPUT K#y USING PMfh4 
R47» Pmlh4, IMAGE #,2S% 
S40» NEXT I 
949» » 
SSOO NEXT 1 
5S*» » 
SS2» * 
Sr>30 UNITE SIN N#y*i» 
554» COSU» Ltn« 
9115» UNITE »fN H«vti»,l0»10 
596» OUTPUT Key USING Pm*4%»AU) 
597» f 
550» ; New fur ' ##«lwc#d Run D4V4 * 

•»#•«» » 
56%» MITE DIN K»yit3 
562» OUTPUT K*y USING rnt«tiA(t) 
S63» OUTPUT Kvyt" 041» > 
564» OUTPUT Ktyi* Ofifr^tcr ".Attt) 
<565» WHITE »1N *#»»*»,%» 
566» OUTPUT ntfi'mmmmmmmmmmmmm-nmMmmmmmm^wnmmmmmmmmmmmmmmmmmmmwmmmmmmmmmmmmmmm" 
567» OUTPUT fCfyt" Man P*U * 
'*60» OUTPUT Xe»r " 
569» OUTPUT K#yr « T»-T# Qtn 8t(»> 8f«s> Sft*)" 
S7»» (HITPUT Ir» #r DTU/hr T»rb, Urn M###, ' 
571» OUTPUT i 
572» rO» J"» TO 12 
573» OUTPUT Kty USING PMfr»X(J) ,Tf«(J>,QU<J>.llvtJ>,8f•(J>.SlatJ>,8l«(J>.•««(J> 
574» r»tr> IMAGE /,2D 4D,2%,3D 2D,2%,2D 3D,2%,7D,3(3D 6D),2%,2D 3» 
«759 NEXT J 
576» WHITE DIN K»y>t» 
S77» OUTPUT %9i0i''mmmmmmmmmmmmmm»mmmmmmmmwmmmmmmmmm»wmmmmmmmmmMmmmmmmmm9mm9mm»9'' 
578» » 
579» I 
58»» DISP * Cheek $h* T#mp#p#*wre*, H««t * XcasurcMinf * 
581» PAUSE 
51»?» INPUT "Af# T##v OK and 8.8 eand. ? ,Yas*l , M«"» ",M 
503» IP N#» THCM GOTO 61» 
504» I 
505» FOB J*t TO 12 
586» T«t«l(J,|)«A(J> 
507» T»t«ICJ,2»C(J> 
588» T«t«l(J,3>!>X(J> 
S89» Tat4ltJ.4)«U{J> 
59»» Tat4lCJ>5)*iie(J> 
591» Tat«l(J.6)«Qi4(J> 
592» Tetal(J,7>«Qcd(J> 
593» Tat4l(J,e»Qr4(J) 
594» Tat4l(J,9>>QnatJ) 
S95» Tatal(J,tO>»T9»(J> 
596» Tat4l(i,tt)«St4(1> 
597» Tat»J<J,t2>«R4wtJ) 
598» Tat«l(J,l3>'Sla(J) 
599» Tat4l(J.t4>«StaiJ> 
608» NEXT J 
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(•810 
6030 
«030 
6040 
&0S0 
è0«0 
6070 
6000 
«090 
6 * 0 0  
«tto 
6*20 
«t30 
6140 
6tS0 
6i«0 
«*70 
6teo 
«*90 
6300 
«2*0 
6??0 
6230 
6240 
«2S0 
62«0 
«270 
62fO 
«290 
6300 
«3*0 
6:120 
«330 
«340 
«3S0 
«360 
6370 
6380 
«390 
6400 
«4*0 
6420 
6430 
«440 
6458 
6460 
6470 
6480 
6490 
6S00 
65*0 
6520 
6530 
6540 
6550 
6560 
6570 
6580 
6590 

157 

» Check »h» Array Taial <•) 
• 

UMITE BIN Key»*? 
OUTPUT N#y USING rnt«*tA4t> 
OUTPUT K»y»* Dai# . •,»*<*) 
OUTPUT Kffyt" Opvratar • 
UNITE DIN W#y,*e,*0 
GOSUS L*m# 
OUTPUT Key»" Th# averaq# r*«ult I Total(•> ) " 

IMAGE * % U(»> (T«-T9> Qia Oca Ora Qna 
IMAGE "Stnf») Rat*t St«(»> * 
OUTPUT Key USING «*20 
OUTPUT Kty USING 6*30 
OUTPUT Ktyi* ineh fp» af DTU/hr " 
COSU» lime 
ros J>* TO *2 
UMITE DIN K«yt*9 
OUTPUT Key USING «2*0^X1J>.U(J>,i*(J),T«a(J>.QiaUt.QcaiJ>,Qra(J>,Qna(J) 
IMAGE #,2D 4D,2%,3D 2D,2%,7D,2*,3D 2D,2%,2D 3D,2)(,3D 30.3X.3D,3D,2%,2D 3D 
OUTPUT Key USING «230k6laU>.Nav(J).SU(J> 
IMAGE D «D.2X,20 30.2X.D.6D 
NEXT J 
UNITE DIN Key,** 
C08UD Line 
UNITE DIN Key 1*2 
t 
I  
DISP * Chech the array Total(•> I If *t'« OK »them RrCOND DATA ,Cfnt» 
PAWE 
I  
I Necordtni) Data $#*«#*$ 

f F t le Name 
I for preesvre gradient* 
IF ADS(*(9*M **5 THEN NaM#3»* 
IF tA»S(Ai9>n.0)S> AND (A»S{At9>>{ 02S> THEN Nan#}»* 
IF A»8(A(9>>> *30 THEN Waw*3** 
I  
F**e#-'A'&VAl$(NaMe*)»"S'%VAL$*Name2*4"P"»VAl#$Naw#3) 
IF C**)*0 THEN F*Ie*»"LAM-'4VAL$(NëMe3) I for no-werte* data 
» 

I  RFC0RDIN6 DATA ' on DISC 
f 

MASS STORAGE IS " FS.O" 
FCREATE Filet,9 
FPRINT File«,Total(«> 
PROTECT F*Ie#,"DATA" 

I  
BEEP 
DigP " Data recorded on DISC , Now , in». TAPE to record» on it too • 
PAUSE 
f 

MAGS STOBAGf IS "TtS " 
CREATE File*,9 
ASSIGN *i TO File* 
PRINT tiiTotaK*) 
PROTECT File*,'DATA-

BEEP 
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6A10 DI9P * D«ta r#e*rd#d on fAPF too" 
6620 PAUSE 
6f30 » 
&A40 DISP » If ih# Uo(»>,(dU/dX),<nd (dP/rtt) «# changed » Chang# FILE NAHC* 
66S0 PAUSE 
6660 I 
6670 f 
6690 INPUT " U any of I <Uo> or <dP/dX> ) changed 7 ,V#«>1, N*»0",N 
6*90 IP N>t THEN COTO 6tO 
6700 OISP * Turn fh» 0 C. power #wp»ly OPP IMM * 
67*0 PAUSE 
6720 BtSP " The CLOSED position & turn OPP the AC Power af Utnd Tunnel* 
6730 PAUSE 
6740 » 
67S0 » 
6760 STOP I a#########*#############*## 
6770 END > ###$$«$###*$##«# End of ih# Haln Program ###########«#### 
6710 I a#############*####*####### 
67*0 * 
6800 # 
6810 ( Th# n»»t «ubprograw l« far n«a«urtpg fh# C»rr«nt . 
6820 » — 
6S30 Ampar> ( 
6IH0 OUTPUT 722j-Pl83T2H3AtMf 
6850 OUTPUT 709 U81N6 6868i9 
6860 IMAGE t.'C.ÏZ.'r* 
6870 K«0 
6880 I 
6890 POM N«t TO 20 
6900 TII6CEII 722 
6910 ENTE# 722 tlNT^f 
6920 K"N«E 
6930 NEXT N 
6940 I 
6950 E**/20 
6960 A(tO>"5/ 05«E I Curreftf la ,awp ,( Uving Shvnf Rp*i« I 
6970 lETMN 
6980 I 
6990 I 
7000 t Th# n#»t Subprogram is far Measuring lh# Temperatur* . 
7010 I ———— ——— 
7020 » 
7030 Therwe ( 
7B40 OUTPUT 722»"ft83T2»aAtHf 
7050 I 
7060 PO# I«A TO • 
7070 mnPUT 709 U81N6 7080il 
7080 IMAGE #,'C",ZZrE' 
7090 K»# 
7*00 FOR N*t TO tO 
7ttO TRICCEK 722 
7*20 ENTER 7?2 »INT>F 
7»30 K»K*e. 
7*40 NEXT N 
7*50 E'K/iO 
7*60 E(I)*Aa#E*Ob 
7*70 NEXT 1 
7*80 I 
7*90 RETURN 
7200 \ 
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7S\9 » — 
7330 # 1h# nvnt subpr*9r«n t« rtnunbsrcd b*cW t«np.far tfrlp* # *,7,32W3 
7339 t 
7249 #«eli_f#Mp* l"l 
72111 Slap*(C<l«2>-C(X*3>>/6 
726» A>C(1«3> 
7270 l(J,l><<A-SUp 
7280 i<J,2>*A^8lap 
7290 #W,3)"A*]«#l,p 
7300 »tJ,4)«A*l«81ap 
7310 81op><CU*l>-Cn«2>>/* 
7320 *"En#2) 
7330 t(J.9>«A*8l«p 
7340 #W,6)"A*3##1*P 
73S0 t<J.7»A«W81op 
7360 llapi(i(1>-K(l«t>>/6 
7370 A-en*t) 
7380 »<J.8»A*81ap 
7390 t(J,9)'A«3«81ap 
7400 >U.tO>«A*S«Al(p 
7410 tU,lt>oA*7«81*p 
7420 RETURN 
7430 I 
7440 I —— 
7450 t Th# n»»f #wbpr*gr*w far Wek f«wp. #$p*p*'#3,5,*»,$3,,*6,i9,2S*29 
7460 I — 
7470 »#ek_*#Mp2* I 
7480 8«J,t>*T»J,l>-IT<J,fl-»4J,2»> 
7490 •U,3l»<IHJ.2MiU,4>>/2 
7400 »iJ,»>"TU,S»-iTiJ,4>-iO,4)> 
7«tO RETURN 
7S20 ( 
7530 T#MP ( 
7540 OUTPUT K»» USINC 7550>J,I,T«J,l»,8iJ,l»,T(J,I»-8<J,I>,T(J,l>-At4> 
7550 IMAGE 5%,28,2%,2D,4%,W4B 20,2%,M$D2D,2%,M4B 28,2%,M48 20 
7560 Nf*T I 
7570 WRITE »IN KvyitO 
7580 OUTPUT Kpy USINC 7590»T»(J> 
7590 IMAGE 5%,' T»»U> « ',M4D 28 
7A00 OUIPUT K»y USINC 76tO»Tb{J) 
7610 IMAGE 5*," Tb«<J» « ".«40.28 
76?» WRITE PIN H9Vil9,i9 
7639 RETURN 
7640 I 
7650 I 
7660 # Th# ncsf *»bpr#gr*m Is far ih* h»«t «qw4fian» 4 8fi»,>) c«Icvl«t>»n 

7680 H««t' I 
7690 ! 
7700 T*vr»tAt3)*A(4l)/2 
7710 I 
7720 I PROPERTIES OF AIR 
7730 t 
7740 Cp= 223»»3.42«IO*l-5)«<T«»r*459.67>-2.93»tO*C-9>»iT«»r*459..67»''2 
7750 K#» 0020493*2 43*IO'(-5)#(Tavr*459 67> I BTU/<br.Ff aF) 
7760 Wi«».OttB2O5*6.09»t0*t-5>«tT»»r*459.67> I IbM/(lir.Ft> 
7770 • 
778# I 
7790 FOR J"» TO t? 
7800 • 
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78tO U<J)'At7>*A(e>«X(J)/t2 f » fpa 
7038 »0@03$M**P*4S» 67)- 47863*/3A»9 # F«2/3#« 
7n30 Fra* 7RSB6- IIOOI4«(T*(*p*4«9 67) » P # 
794# ll»(J)-*UtJ)«tXtJ>/t3)/K<»lft > Rvynalds Namber 
7MS» t«aU)»Tft<})-A(4> 
706» SlaU)" 4S3«(t-tnt6>/XU>>*.78)*(- 3.13)/<i»(X>«.S«Ppa*.666> I Laminar 
787» 9$*U)« 0307#$%-<A«6)/X$J))' »)"(- %*%)/<#*U)* 3#mpa» 4*9) » Turbulant 
7W90  ̂ I t ,  1 1 1 1 ( 1 1 ( 1 .  • <  . . 1 1 1 1 1  
7890 I The #pan-aw#raq*d M#a*up#d STANTON I far each Sfptp * #i<#)m aw 
7900 I bawd an th# tpan-avtraqvtf #wrfac* tanparafttpa 
7910 * < ftp $h# plat* wlthaitt ««PI»» q#napa*ap*) 
7930  ̂ 1 . .  I  .  ,  I  .  .  1 . 1  1  I  1  1  .  1 1  «  1  I  1 1 1  1  t  I  .  1  .  1  I  1  1 1 1  .  
793» » 
7940 » 8* 29#U* 00033#n$U)-68)) 
79S0 # Ola(J)"A(t0)*l«8«3.4t3 
796* » QeatD" tetSf« 083«(Tft(J)-Tb(J>)«<t3/ 337) 
7970 » 0»P»»T»<J)*46»)*4-«A<3)»460)*4 
7980 * QPaU)* t47«t0't-8»«.49« 063«01P 
7990 # Qn«(J>"Ola(J)-qea(l)-Qpa(J) 
«000 I 9t«U)>QnaU)9U(J)/t2)/( 083#T*aU)#Ka#W#W)#Ppa) « Mea# Aw. 8i t 
8010 # 8aw<J><Sta(J)/81a(J) t ( 8l<»)V6 / Sf<»)a 1 <— AWi 8aft« 
0030 t 
803» I  1  
804» I Iti* taeal H«atwP*4 8?ANION # * far «ach 8fPtp t Sfi»«f)n 
«050 # 
8»69 I 
807» If J»t ÎMfN 
808» ir J«3 IHfN M"# 
«09» IW J*3 THfN M'S 
8100 ir J*4 INCH n«tt 
OHO ir J«5 THfN M»S 
8130 ir J"6 THIN N«f 
B)3» ir J»7 TMKN H»5 
814» ir |«B THfN MS 
0»5» ir J»9 THfN N»tt 
816» IF J*10 THfN M»S 
«17» IF J.ll THfN M*S 
8*8» IF J»t3 TWN IWll 
8190 ( 
820» FM l«t TO M 
821» I 
e?2# »«023#tT(J,I)-68)) # Strip 8*1$ 'unctlan #f Ttnp 
823» QI(JI,1)«AU»>*3«R«3 413 # W#a$ Inpwi « l*2«8(t>«Can ^DTU/hr 
RP4» IF T(j,l)t8(jr.l> THfN »U,l)*TiJ,I>- 2 
825» QeW,:)* 18$ ee3$*TW,I)-8U.I))#(12/ 227) ( Cantfttctlan las» i»TU/hr 
«26» »»p»iT«J,I»*46»)*4-CAi3»*46»>*4 I fttùUtUn'* T#*p 4iff 
827» QfW.I)» 174#l»'( e)* 45* 083*D$r I Radlailan lass* ««««AVOir i»TU/hr 
«280 QnW,I)"QtW,I)-%(J,I)-(|f(J,I) I N«t (Farcsd Canvscfian)» * 
8290 Tsa<J,l)'»T<J,l)-At4) I iTs - Ta» t F 
8300 9t<J,|)«qfliJ.,l>«(X(J)/12)/<.083*Tsa(J,I)«Ka«Fpa«R«(J)> 
8310 I * f N«(«,z)/Re(*)«Frl ^ I h(».i>/Ra«Cp«Ua(») ) 
«32» I wh#r# 0 hi»,ft # f Q»/A»iT»-Ta) I 
8330 » 
8340 BalJfD-SttJ.D/SlatJ) ( Batia # St(s,z>wilh VC /ST(s)withaitt 
835» » 
8360 NFXT I 
837» ( 
«380 MfXT J 
8390 • 
«400 RETURN 
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84tO t 
0429 I — — 
6430 t Th« n#»i tubpraqrAn Is th« veptt» e«ftquratian . 
0440 » — — 
8490 Vtrt»»> I 
R4A0 INPUT » Anqt* af Incldvne* T'*,00> 
8470 INPUT • Tp«n«vtpi» PMeh , inch , 
H4i0 INPUT " Hfflqhf af é prairupian , Inch , T»,0<3> 
8490 INPUT * L#ng*h af é ppafru^tan , Inch , ?",e(4) 
HSOO INPUT • Pratrusian't tKictina«« , tneh , 
nsto INPUT * Th« nunbtP af U.C«ntr«tari. 7*.6tè) 
8*̂ 30 I Order far fhe Rtcadtnq Pil«« 
8S30 » 
0440 IP 0(3)» 0629 THIN 
899» IP e(3>> 139 fNCN Hêm*t»a 
(1960 IP C(3)*,29 THKN N«n*f3 
8970 IP CO>«4 THKN N#M#2"4 
AS80 IP C(3)"3 THfN N*M#2*3 
8990 IP C(3)«3 THKN 
«1600 IP C(2>»t THCN N4w»2>t 
86tO IP 0(2)» 79 THKN Nam#3«0 
nt,99 #PTU*N 
8630 t 
(1640 Wr*i#_vq* I 
86S0 miTPUT Kpyt* U»*nq Rvetanqwlar Caunlvr Ratatinf Van#* C»nfr«farc * 
8660 TOITPUT " 
0670 OUTPUT M«y U8INC PnfqtiiOd) 
8680 OUTPUT K»y U8INC PM*q3j,C(2* 
0690 OUTPUT K«y UfilNC Pm*g3»C(3) 
8700 OUTPUT K»y UOIW Pm$,4iG«4) 
0710 OUTPUT K»y USING Pm*99|,(;(9) 
8720 OUTPUT K«y USING Pni«6iC(6> 
0730 Pm*g% IMAGE /«'Anqlv b9tn, « V C't and pUt* «»!* t dpgr*# * »",20 3D 
8740 Pw$i;3 IMAGE "Trawwr*# pilch b*tn. V.G's bWd#» » tnch » »",3D 20 
0790 Pw$q3 IMAGE 'Hvtqhf af V G# bladv* * inch » «*,30 3D 
8760 P»fg4' image "Lengih #f V G * Made# » inch * •*,21».2D 
O770 PM*99 IMAGE "Thichnew af V G # hl«d»« j, inch j »',3D 30 
6780 pM$g6 IMAGE *Th» nvnOvr af Vart»» 6«ncratar<( '',P0 
0790 RETURN 
8800 t 
8010 » 
8830 Lin# t 
0830 FOR N*l TO t9 
8840 OUTPUT K#y USING 8890 
BOSO IMAGE »,"mmmmmwrn" 
8860 NEXT N 
8070 OUTPUT K»y USING 8880 
8880 IMAGE 
R890 RETURN 
8900 I —— 
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XI. APPENDIX C 

A. Error Analysis 

In any experiment» uncertainties in the raw data can occur due to 

two types of errors: systematic and random. By careful operating pro­

cedure, random errors can be avoided or minimized. Systematic errors 

always exist in data acquisition but can be minimized by proper experi­

mental design. Hence, to estimate the accuracy of experimental data, 

It is necessary to quantify the total uncertainty through the use of 

statistics In a propagatlon-of-error analysis for single sample experi­

ments, ouch as that proposed by Kline and McClintock (19). 

The expression of the uncertainty In a calculated results found 

from a linear function of variables is 

where is the uncertainty in any quantity <fr, i» any of n parameters 

of which quantity * is a function, and U are the uncertainty limits 
H 

placed on the several variable parameters by the experimenter. 

tainties in the properties of air are negligible. Uncertainties given 

below for the instruments used in this investigation were obtained from 

the manufacturers' catalogs for instruments. 

The uncertainty in the dc voltage reading for voltage measurements 

of thermocouples and the hot-film anemometer is, for » 0.003% of 

(25) 

In Che following calculations» it has been assuised that the uncer 
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reading + 0.0004 of range, 

"e " * 0 002) + X l)v - 0.000004 V 

The uncertainty in the dc voltage measurement of the pressure transducer 

Is for Wg * 0.002% of reading + 0.001% of range, 

"e • « 3) . (Sjîgl X 10) V 
P 

W_ - 0.00016 V 
P 

The uncertainty In the resistance moaHurement is, for » 0.0025% of 

reading + 0.0004% of range, 

• 0.000008 kr 

The uncertainty in ac voltage measurement is, for W • 0.04% of reading 

4- 40 digits 

«. • (w » "-i) + (w - ») 

tf » 0.00008 V 
e 

Uncertainties for the following cases were obtained from the cali­

bration data: 

Temperature measurement using thermocouples » 0.2®F 

Pressure measurement using pressure transducer » 0,01 in. water 
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Uncertainty in the mercury barometer « 0.01 in. Hg. 

Current measurement using shunt resistance > 0.02 amp. 

The free-streaa density was calculated from equation (12). The 

uncertainty in using equation (25) is given by 

|-(70.7H • 5.2024 p.„,) J 

P , • 29.on In. Hg 
ato 

p . . » 0.115 In. of water 
8(x) 

T • 530.27'R 
o 

P, • 0.0725 lb /ft̂  a B 

• 0.000025 lb /ft̂  or i 0.0345% p_ m 
& 

The local free-etream velocity was calculated from equation (13). 

Then, the uncertainty in calculated using equation (25), given 

by 

.H 

\u) iïii] 4^]| 

where âp - - P,(,, 

Ap w 0.047 in. of water 

P, » 0.0725 lb /ft̂  
D IB 
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U , . = 14.03 fps 
o(x) 

W„ - 0.14927 fps or t 1.064% 
o(x) 

Th« local Reynolds number was calculated from equation (15). The 

analysis showed that the uncertainty in the Reynolds number was depen­

dent almost exclusively on the uncertainty in the velocity measurement. 

Because of small dependence on the kinematic viscosity v » this variable 

was neglected in the computations. Then, from equation (25) 

"«fe ]  -Wf  

X » 9.125 in. 

Uo(x) • " '1" 

Rê x) " 63646 

W- • 691.37 or i 1.086% 
**(x) 

The relation used to obtain the generated power on the local strip 

surface was given by equation (6). Then, the uncertainty in Q is 

I » 3.0991 amp 

R m 0.2512 ohm 
8 
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Q -  8.235 Btu/hr 

Wq - 0.345 Btu/hr or S 4.185% 

Th« local conduction loss was calculated from equation (8). Then, 

h 

the uncertainty in is 

W. 

I 
\ • 0.083 ft' 

Xp • 0.227 In. 

U, - t̂ ) - l.622*F 

Qg " 1.284 Btu/hr 

W_ • 0.1952 Btu/hr or i 15.20% 
ĉ 

Fro» equation (9), the uncertainty in is 

W_ • Q. 

- 2 
1 
2 
+ M 

[ < -

2 

<>j 

2 
+ 

r . j  

• 530.27'R 

Tg - 563.01'R 

• 1.399 Btu/hr 

W « 0.0207 Btu/hr or t 1.485 Z 
r̂ 

Noting that, it has been assumed that k , o and e all have small enough 
P ® 

variations in their true values that the contribution of each and total 
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contribution of their aggregate uncertainty will be negligiblu. Thvs from 

equation (10), the uncertainty in is 

Wq "Q 

•» 

• 2 

+ 
 ̂ n 

- 5.551 Btu/hr 

M - 0.3969 Btu/hr or ± 7.15% 

The specific heat of air was evaluated at the mean boundary layer 

temperature, where 

C - 0.2231 + 3.42 x lO'̂  T - 2.93 Jt lO"* T ̂  
p no 

Then, the uncertainty in I» 

• ! 13.42 10 
S I 

(3.42 10"^ I  + [5. 
n 

86 t 10-9 I 

T • 573.7l'R 
o 

C - 0.2417 Btu/lb '? 
p m 

W. - 7 X 10 * Bcu/lb_'P or i 0.0028% 
S • 

The local Stanton number was obtained from equation (16). and the 

local heat transfer coefficient was calculated from equation (11). 

Substituting from equation (11) into equation (16) for ĥ ^̂ , the local 

Stanton number is given by 

St 
M 

*s<'. - V "a S 
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The uncertainty in St̂ ĵ is 

Il'èl "1^1 

• ly ' - fe f - f t f l  

Qjj - 5.551 Btu/hr 

(t̂  - t̂ ) - 21.36'F 

• 0.0725 lb /ft̂  a m 

".(x) • '4 03 

C„ • 0.2417 Btu/lb 'r p n 

®̂ (x) " 0003499 

W,̂  • 0.000259 or t 7.395% 

The uncertainty for the sensitivity factor of the hot-film was 

determined from the calibration data. The effective mean air velocity 

was obtained from equation (4). The uncertainty in U_ is 
9 

H 
2 

S » 0.3357 
I B  

Wg = 0.0084 

E "6.339 Volt 
Bl 
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- 18.883 f pa  
m 

w, 0.4725 fp# or ± 2.5% 

The uncertainty in u' is 

[©'•<î)"r 

«* - 0.05 Volt 

u' - 0.1489 fp# 

W^, " 0.0037 fp# or i 2.5% 

The local turbulence intensity was obtained fron 

Then the uncertainty in Tu i# given by 

Inside the boundary layer, close to the plate surface, for a 

measureiaent point the data were 

- 14.3582 fp# 

u* » 1.618 fp# 

Tu » 0.1127 

- 0.00448 or t 3.331% 

For the free-stream turbulence, the data were 

(26) 
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L' - 18.883 fpâ 

u* <• 0.1489 fps 

Tu - 0.0079 

Than» from equation (26) 

Tu - 0.0002 or t 2.497% 
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XII. APPENDIX 0 

A. Tabular Data 
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Table D.l. Measured soan-averaged Stanton number behind a 
row of counter-rotating vortex generator blades 

Free-stream pressure gradient = 0.0 
Height of vortex blade * 0.0625 in. 

Space between vortex blades, in. 

X 0.75 1.0 2.0 4.0 

in. Re(x} St(x) Re(x) St(x) Re(x) St(x) Re(x) St(x) 

4. 88 22629 0. 00593 23836 0. 00616 23955 0. 00457 25341 0. 00425 
7. 00 32769 0. 00430 34505 0. 00370 34670 0. 00300 36634 0. 00276 
9. 13 43076 0. 00367 45342 0. 00310 45552 0. 00258 48076 0. 00244 

11. 25 53551 0. 00330 56349 0. 00314 56599 0. 00280 59668 0. 00250 
14. 44 69577 0. 00346 73176 0. 00296 73482 0. 00265 77337 0. 00240 
17. 63 85980 0. 00366 90382 0. 00317 90738 0. 00297 95342 0. 00209 
20. 81 102760 0. 00306 107970 0. 00253 108367 0. 00265 113684 0. 00182 
24. 00 119916 0. 00349 125937 0. 00302 126370 0. 00296 132363 0. 00209 
27. 19 1374 50 0. 00316 144284 0. 00305 144747 0. 00265 151378 0. 00226 
30. 38 155360 0. 00321 163012 0. 003CI 163497 0. 00275 170731 0. 00210 
34. 63 179826 0. 00315 188574 0. 00309 189079 0. 00292 197057 0. 00218 
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Table D.2. Measured span-averaged Stanton number behind a 
row of counter-rotating vortex generator blades 

Free-stream pressure gradient » 0.0 
Height of vortex blade » 0.125 in. 

Space between vortex blades. in. 

X 0 .75 1 .0 2. 4. 0 

in. Re(x) St(x) Be(x) St(x) Re{x) St(x) Re(x) St(x) 

4.88 28635 0.00437 28185 0.00433 26 83 G 0.00430 30623 0. 00389 
7.00 41376 0.00312 4 0720 0.00324 33767 0.00237 44224 0. 00285 
9.13 54275 0.00266 53407 0.00270 50350 0.00269 57969 0. 0024 5 

11.25 67332 0.00254 66246 0.00251 .63080 0.00253 71863 0. 00206 
14.44 87212 0.00245 85788 0.00244 81699 0.00269 92933 0. 00222 
17.63 107447 0.00263 105670 0.00217 100649 0.00261 114439 0. 00195 
20.81 128036 0.00247 125894 0.00195 119923 0.00228 136229 0. 00183 
24.00 148980 0.00281 1464 59 0.00206 139537 0.00243 1583 54 0. 00196 
27.19 170278 0.00266 167365 0.00230 159476 0.00213 180314 0. 00182 
30.38 191931 0.00265 188611 0.002X6 179744 0.00217 203610 0. 00166 
34.63 221353 0.00283 217471 0.00236 207233 0.00253 234525 0. 00207 



www.manaraa.com

Table D.3. Measured span-averaged Scanton nearer behind a 
row o£ counter-rotating vortex generator blades 

Free-stream pressure gradient « 0.0 
Height of vortex blade = 0.23 in. 

Space between vortex blades, in. 

X 0.75 1.0 2.0 4.0 

in. Re(x) St(x) Re(x) St(x) Re(x) St(x) Be(x) St(x) 

4. 88 28727 0. 00496 28354 0. 00499 25511 0. 00456 27581 0. 00392 
7. 00 41452 0. 00338 40951 0. 00340 36857 0. 00319 39846 0. 00349 
9. 13 54298 0. 00271 53692 0. 00282 48340 0. 00312 52257 0. 00313 

11. 25 67268 0. 00248 66577 0. 00233 59959 0. 00282 64815 0. 00271 
14. 44 86952 0. 00274 86175 0. 00245 77645 0. 00259 83928 0. 00286 
17. 63 106912 0. 0027 5 106097 0. 00211 95638 0. 00246 103372 0. 00262 
20. 81 12714 7 0. 00256 126343 0. 00206 113939 0. 00215 123146 0. 00250 
24. 00 147659 0. 00283 146914 0. 00205 13 2 54 9 0. 00230 143251 0. 00254 
27. 19 168446 0. 00270 167810 0. 00231 151466 0. 00233 163686 0. 00238 
30. 38 189510 0. 00275 189029 0. 00205 170691 0. 00219 184452 0. 00220 
34. 63 218023 0. 00295 217827 0. 00239 196803 0. 00239 212655 0. 00236 
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Table 0.4. Measured span-averaged Stanton number behind a 
row of counter-rotating vortex generator blades 

Free-stream pressure gradient = - 0.02 Ibf/ft^ 
Height of vortex blade * 0.0625 in. 

Space between vorcex blades, in. 

X 0.75 1.0 2.0 4.0 

in. Re(x) St(x) Re(x) St(x) Re(x) St(x) Re(x) St(x) 

4. 88 33443 0. 00446 33431 0. 00432 33657 0. 00409 34242 0. 00426 
7. 00 48447 0. 00376 48414 0. 0032Ô 48734 0. 00280 49565 0. 00292 
9. 13 63709 0. 00317 63646 0. 00263 64 057 0. 00250 65130 0. 00255 

11. 25 79230 0. 00298 79128 0. 00278 79626 0. 00262 80935 0. 00234 
14. 44 102996 0. 00313 102817 0. 00234 103442 0. 00267 105096 0. 00244 
17. 63 127344 0. 00306 127066 0. 00285 127812 0. 00266 129799 0. 00228 
20. 81 152273 0. 00301 151876 0. 00253 152735 0. 00266 155045 0. 00209 
24. 00 177784 0. 00310 177246 0. 00288 178213 0. 00287 180834 0. 00228 
27. 19 203877 0. 00286 203177 0. 00273 204244 0. 00259 207165 0. 00229 
30. 38 230551 0. 00289 229669 0. 00277 230830 0. 00261 234039 0. 00220 
34. 63 267022 0. 00331 265863 0. 00274 267140 0. 00264 270715 0. 00228 
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Table D.5. Measured span-averaged Scanton number behind a 
row of counter-rotating vortex generator blades 

Free-stream pressure gradient » - 0.02 Ibf/ft^ 
Height of vortex blade » 0.125 in. 

Space between vortex blades, in. 

X 0.75 1.0 2.0 4.0 

in. Re(x) St(x) Re(x) St(x) Re(x) St{x) Re(x) St(x) 

4. 88 36574 0. 00400 35763 0. 00385 36581 0. 00379 36921 0. 00313 
7. 00 52914 0. 00291 51739 0. 00271 52903 0. 00252 53412 0. 00247 
9. 13 69496 0. 00247 67951 0. 00255 69454 0. 00250 70143 0. 00217 

11. 25 86319 0. 00230 84398 0. 00233 86233 0. 00245 87115 0. 00181 
14. 44 112005 0. 00234 109510 0. 00214 111831 0. 00218 113025 0. 00208 
17. 63 138235 0. 00254 135151 0. 00194 137943 0. 00203 139476 0. 00174 
20. 81 165008 0. 00251 161321 0. 00204 164570 0. 00191 166470 0. 00168 
24. 00 192323 0. 00284 188021 0. 00219 191711 0. 00201 194005 0. 00180 
27. 19 220182 0. 00260 215250 0. 00243 219367 0. 00182 222082 0. 00155 
30. 38 248584 0. 00262 243008 0. 00257 247537 0. 00170 250701 0. 00151 
34. 63 287298 0. 00270 280843 0. 00269 285897 0. Q0200 289703 0. 00178 
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Table 0.6, Neasured span-averaged Stanton number behind a 
row of counter-rotating vortex generator blades 

Free-stream pressure gradient « - 0.02 Ibf/ft^ 
Height of vortex blade « 0.25 in. 

Space between vortex blades, in. 

X 0.75 1.0 2.0 4.0 

in. Re(x} St(x) Re(x) St(x) Re(x) St(x) Re(x) St(x) 

4. 88 40278 0. 00418 38882 0. 00434 36821 0. 00380 36175 0. 00338 
7. 00 5818S 0. 00316 55177 0. 00315 53250 0. 00322 52333 0. 00305 
9. 13 76304 0. 00252 73682 0. 00240 69909 0. 00272 68727 0. 00270 

11. 25 94636 0. 00250 91398 0. 00214 36798 0. 00257 85358 0. 00235 
14. 44 122532 0. 00256 118367 0. 0021C 112563 0. 00242 110747 0. 00252 
17. 63 150905 0. 00274 145809 0. 00189 138845 0. 00237 136668 0. 00231 
20. 81 179756 0. 00275 173 725 0. 00199 165645 0. 00225 163120 0. 00220 
24. 00 209085 0. 00293 202114 0. 00253 192963 0. 00223 190105 0. 00221 
27. 19 238892 0. 00277 230977 0. 00276 220798 0. 00222 217621 0. 00208 
30. 38 269177 0. 00279 260314 0. 00283 249150 0. 00190 245669 0. 00183 
34. 63 310300 0. 00284 300166 0. 00287 287758 0. 00241 283894 0. 00206 
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Table 0.7. Measured span-averaged Stanton number behind a 
row of counter-rotating vortex generator blades 

Free-stream pressure gradient » - 0.04 Ibf/ft^ 
Height of vortex blade » 0.0525 in. 

Space between vortex blades, in. 

X 0.75 1.0 2.0 4.0 

in. Re(x) St(x) Re(x) St(x} He(x) St(x) Re(x) St(x) 

4. 88 49502 0. 00385 49020 0. 00401 49780 0. 00303 50746 0. 00261 
7. 00 71625 0. 00328 70933 0. 00293 72009 0. 00214 73387 0. 00218 
9. 13 94079 0. 00276 93177 0. 00265 94561 0. 00206 96344 0. 00188 

11. 25 116864 0. 00284 115753 0. 00267 117434 0. 00224 119618 0. 00157 
14. 44 151661 0. 00298 150237 0. 00298 152348 0. 00238 155122 0. 00184 
17. 63 187203 0. 00283 185466 0. 00304 187986 0. 00227 191338 0. 00161 
20. 81 223489 0. 00261 221441 0. 00283 224348 0. 00237 228266 0. 00164 
24. 00 260520 0. 00285 258160 0. 03300 261435 0. 00250 265906 0. 00182 
27. 19 298295 0. 00262 295625 0. 00278 299247 0. 00246 304257 0. 00216 
30. 38 336814 0. 00263 333834 0. 00265 337783 0. 00241 343321 0. 00218 
34. 63 389332 0. 00257 385940 0. 00281 390292 0. 00251 396513 0. 00238 
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Table D.8. Measured soan-averaged Stanton number behind a 
row of counter-rotating vortex generator blades 

Free-stream pressure gradient » - 0.04 Ibf/ft^ 
Height of vortex blade * 0.125 in. 

Space between vortex blades, in. 

X 0.75 1.0 2.0 4.0 

in. Re(x} St(x) Re(x) St(x) Re(x) St(x) Re(x) St(x) 

4. 88 51047 0. 00355 52526 0. 00342 32458 0. 00300 51395 0. 00209 
7. 00 73826 0. 00278 75964 0. 00240 75882 0. 00247 74318 0. 00213 
9. 13 96924 0. 00240 99731 0. 00203 9964 5 0. 00213 97556 0. 00188 

11. 25 120343 0. 00237 123827 0. 03203 123747 0. 00190 121110 0. 00166 
14. 44 156070 0. 00259 160588 0. 00178 160535 0. 00195 157033 0. 00179 
17. 63 192517 0. 00295 198090 0. 00165 198086 0. 00199 193666 0. 00167 
20. 81 229684 0. 00290 236332 0. 00210 236399 0. 00179 231008 0. 00155 
24. 00 267571 0. 00297 275314 0. 00253 275475 0. 00195 269061 0. 00168 
27. 19 306178 0. 00263 315036 0. 00249 315313 0. 00170 307824 0. 00179 
30. 38 345505 0. 00275 3 55499 0. 00247 3 55913 0. 00173 347297 0. 00158 
34. €3 399060 0. 00300 410601 0. 00264 411233 0. 00210 401032 0. 00176 
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Table D.9. Measured soan-averaged Stanton number behind a 
row of counter-rotating vortex generator blades 

Pree-strearo pressure gradient « - 0.04 Ibf/ft^ 
Height of vortex blade « 0.25 in. 

Space between vortex blades, in. 

X 0.75 1.0 2.0 4.0 

in. Re(x) St(x) Be(x) Stixj Re(x) St(x) Re(x) St(x) 

4. 68 50828 0. 00396 49667 0. 00386 49804 0. 00367 48767 0. 00291 
7. 00 73487 0. 00211 71823 0. 00264 72009 0. 00279 70551 0. 00266 
9. 13 96453 0. 00278 94287 0. 00238 94514 0. 00250 92654 0. 00235 

11. 25 119724 0. 00239 117057 0. 00207 117321 0. 00226 115076 0. 00210 
14. 44 155205 0. 00296 151790 0. C0238 152094 0. 00215 14 9308 0. 00228 
17. 63 191375 0. 00311 187214 0. 00225 18754 5 0. 00210 184259 0. 00213 
20. 81 228232 0. 00322 223329 0. 00251 223672 0. 00210 219929 0. 00201 
24. 00 265779 0. 00315 260137 0. 00287 260475 0. 00206 256317 0. 00202 
27. 19 304013 0. 00290 29763 5 0. 00282 297956 0. 00220 293424 0. 00203 
30. 38 342936 0. 00293 335826 0. 00283 336113 0. 00186 331250 0. 00185 
34. 63 395904 0. 00320 387822 0. 00282 388042 0. 00245 382802 0. 00201 
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